Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adolfo Daniel Rodríguez-Carrizalez is active.

Publication


Featured researches published by Adolfo Daniel Rodríguez-Carrizalez.


Experimental Diabetes Research | 2016

Diabetic Polyneuropathy in Type 2 Diabetes Mellitus: Inflammation, Oxidative Stress, and Mitochondrial Function

Luis Miguel Román-Pintos; Geannyne Villegas-Rivera; Adolfo Daniel Rodríguez-Carrizalez; Alejandra Guillermina Miranda-Díaz; Ernesto Germán Cardona-Muñoz

Diabetic polyneuropathy (DPN) is defined as peripheral nerve dysfunction. There are three main alterations involved in the pathologic changes of DPN: inflammation, oxidative stress, and mitochondrial dysfunction. Inflammation induces activation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases. Oxidative stress induced by hyperglycemia is mediated by several identified pathways: polyol, hexosamine, protein kinase C, advanced glycosylation end-products, and glycolysis. In addition, mitochondrial dysfunction accounts for most of the production of reactive oxygen and nitrosative species. These free radicals cause lipid peroxidation, protein modification, and nucleic acid damage, to finally induce axonal degeneration and segmental demyelination. The prevalence of DPN ranges from 2.4% to 78.8% worldwide, depending on the diagnostic method and the population assessed (hospital-based or outpatients). Risk factors include age, male gender, duration of diabetes, uncontrolled glycaemia, height, overweight and obesity, and insulin treatment. Several diagnostic methods have been developed, and composite scores combined with nerve conduction studies are the most reliable to identify early DPN. Treatment should be directed to improve etiologic factors besides reducing symptoms; several approaches have been evaluated to reduce neuropathic impairments and improve nerve conduction, such as oral antidiabetics, statins, and antioxidants (alpha-lipoic acid, ubiquinone, and flavonoids).


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy | 2014

Effect of rosuvastatin on diabetic polyneuropathy: a randomized, double-blind, placebo-controlled Phase IIa study.

Jaime Hernández-Ojeda; Luis Miguel Román-Pintos; Adolfo Daniel Rodríguez-Carrizalez; Rogelio Troyo-Sanromán; Ernesto Germán Cardona-Muñoz; María del Pilar Alatorre-Carranza; Alejandra Guillermina Miranda-Díaz

Background Diabetic neuropathy affects 50%–66% of patients with diabetes mellitus. Oxidative stress generates nerve dysfunction by causing segmental demyelinization and axonal degeneration. Antioxidants are considered to be the only etiologic management for diabetic polyneuropathy, and statins such as rosuvastatin increase nitric oxide bioavailability and reduce lipid peroxidation. The aim of this study was to evaluate the antioxidant effect of rosuvastatin in diabetic polyneuropathy. Methods We conducted a randomized, double-blind, placebo-controlled Phase IIa clinical trial in patients with type 2 diabetes and diabetic polyneuropathy (DPN) stage ≥1b. We allocated subjects to two parallel groups (1:1) that received rosuvastatin 20 mg or placebo for 12 weeks. Primary outcomes were neuropathic symptom score, disability score, and nerve conduction studies, and secondary outcomes were glycemic control, lipid and hepatic profile, lipid peroxidation, and nerve growth factor beta (NGF-β) levels. Results Both groups were of similar age and duration since diagnosis of diabetes and DPN. We observed improvement of DPN in the rosuvastatin group from stage 2a (88.2%) to stage 1b (41.2%), improvement of neuropathic symptom score from 4.5±2 to 2.4±1.8, and significant (P=0.001) reductions of peroneal nerve conduction velocity (from 40.8±2.2 to 42.1±1.6 seconds) and lipid peroxidation (from 25.4±2 to 12.2±4.0 nmol/mL), with no significant change in glycemic control or β-NGF. Conclusion The severity, symptoms, and nerve conduction parameters of DPN improved after 12 weeks of treatment with rosuvastatin. These beneficial effects appear to be attributable to reductions in lipid peroxidation and oxidative stress.


Oxidative Medicine and Cellular Longevity | 2015

Effects of Ezetimibe/Simvastatin and Rosuvastatin on Oxidative Stress in Diabetic Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Geannyne Villegas-Rivera; Luis Miguel Román-Pintos; Ernesto Germán Cardona-Muñoz; Oscar Arias-Carvajal; Adolfo Daniel Rodríguez-Carrizalez; Rogelio Troyo-Sanromán; Fermín Paul Pacheco-Moisés; Aldo Moreno-Ulloa; Alejandra Guillermina Miranda-Díaz

Objective. To evaluate the effects of ezetimibe/simvastatin (EZE/SIMV) and rosuvastatin (ROSUV) on oxidative stress (OS) markers in patients with diabetic polyneuropathy (DPN). Methods. We performed a randomized, double-blind, placebo-controlled phase III clinical trial in adult patients with Type 2 Diabetes Mellitus (T2DM) and DPN, as evaluated by composite scores and nerve conduction studies (NCS). Seventy-four subjects with T2DM were allocated 1 : 1 : 1 to placebo, EZE/SIMV 10/20 mg, or ROSUV 20 mg for 16 weeks. All patients were assessed before and after treatment: primary outcomes were lipid peroxidation (LPO), and nitric oxide (NO) surrogate levels in plasma; secondary outcomes included NCS, neuropathic symptom scores, and metabolic parameters. Data were expressed as mean ± SD or SEM, frequencies, and percentages; we used nonparametric analysis. Results. LPO levels were reduced in both statin arms after 16 weeks of treatment (p < 0.05 versus baseline), without changes in the placebo group. NO levels were not significantly affected by statin treatment, although a trend towards significance concerning increased NO levels was noted in both statin arms. No significant changes were observed for the NCS or composite scores. Discussion. EZE/SIMV and ROSUV are superior to placebo in reducing LPO in subjects with T2DM suffering from polyneuropathy. This trial is registered with NCT02129231.


Journal of Diabetes | 2014

Oxidants, antioxidants and mitochondrial function in non-proliferative diabetic retinopathy.

Adolfo Daniel Rodríguez-Carrizalez; José Alberto Castellanos-González; Esaú César Martínez-Romero; Guillermo Miller-Arrevillaga; David Villa-Hernández; Pedro Pablo Hernández-Godínez; Genaro Gabriel Ortiz; Fermín Paul Pacheco-Moisés; Ernesto Germán Cardona-Muñoz; Alejandra Guillermina Miranda-Díaz

Diabetic retinopathy (DR) is a preventable cause of visual disability. The aims of the present study were to investigate levels and behavior oxidative stress markers and mitochondrial function in non‐proliferative DR (NPDR) and to establish the correlation between the severity of NPDR and markers of oxidative stress and mitochondrial function.


Journal of Diabetes | 2014

Oxidants, antioxidants and mitochondrial function in non‐proliferative diabetic retinopathy (在非增殖性糖尿病视网膜病变中的氧化剂、抗氧化剂以及线粒体功能)

Adolfo Daniel Rodríguez-Carrizalez; José Alberto Castellanos-González; Esaú César Martínez-Romero; Guillermo Miller-Arrevillaga; David Villa-Hernández; Pedro Pablo Hernández-Godínez; Genaro Gabriel Ortiz; Fermín Paul Pacheco-Moisés; Ernesto Germán Cardona-Muñoz; Alejandra Guillermina Miranda-Díaz

Diabetic retinopathy (DR) is a preventable cause of visual disability. The aims of the present study were to investigate levels and behavior oxidative stress markers and mitochondrial function in non‐proliferative DR (NPDR) and to establish the correlation between the severity of NPDR and markers of oxidative stress and mitochondrial function.


Experimental Diabetes Research | 2017

The Role of Oxidative Stress, Mitochondrial Function, and Autophagy in Diabetic Polyneuropathy

Sonia Sifuentes-Franco; Fermín Paul Pacheco-Moisés; Adolfo Daniel Rodríguez-Carrizalez; Alejandra Guillermina Miranda-Díaz

Diabetic polyneuropathy (DPN) is the most frequent and prevalent chronic complication of diabetes mellitus (DM). The state of persistent hyperglycemia leads to an increase in the production of cytosolic and mitochondrial reactive oxygen species (ROS) and favors deregulation of the antioxidant defenses that are capable of activating diverse metabolic pathways which trigger the presence of nitro-oxidative stress (NOS) and endoplasmic reticulum stress. Hyperglycemia provokes the appearance of micro- and macrovascular complications and favors oxidative damage to the macromolecules (lipids, carbohydrates, and proteins) with an increase in products that damage the DNA. Hyperglycemia produces mitochondrial dysfunction with deregulation between mitochondrial fission/fusion and regulatory factors. Mitochondrial fission appears early in diabetic neuropathy with the ability to facilitate mitochondrial fragmentation. Autophagy is a catabolic process induced by oxidative stress that involves the formation of vesicles by the lysosomes. Autophagy protects cells from diverse stress factors and routine deterioration. Clarification of the mechanisms involved in the appearance of complications in DM will facilitate the selection of specific therapeutic options based on the mechanisms involved in the metabolic pathways affected. Nowadays, the antioxidant agents consumed exogenously form an adjuvant therapeutic alternative in chronic degenerative metabolic diseases, such as DM.


Redox Report | 2016

The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: A phase IIa, randomized, double-blind, and placebo-controlled study.

Adolfo Daniel Rodríguez-Carrizalez; José Alberto Castellanos-González; Esaú César Martínez-Romero; Guillermo Miller-Arrevillaga; Fermín Paul Pacheco-Moisés; Luis Miguel Román-Pintos; Alejandra Guillermina Miranda-Díaz

Objective To evaluate the effect of ubiquinone (Coenzyme Q10) and combined antioxidant therapy (CAT) on oxidative stress markers in non-proliferative diabetic retinopathy (NPDR) under clinical management. Study design In a randomized, double-blind, phase IIa, placebo-controlled, clinical trial, three study groups were formed and administered medications as follows: Group 1, Coenzyme Q10; Group 2, CAT; and Group 3, placebo. Methods Serum levels of the products of lipid peroxidation (LPO) and nitrites/nitrates, as markers of oxidative/nitrosative stress, were measured. As antioxidants, the total antioxidant capacity (TAC), catalase activity, and glutathione peroxidase (GPx) activity were measured. Results Baseline serum levels of LPO and nitrites/nitrates were significantly elevated in the three groups vs. healthy group (P < 0.0001), while final levels in the Coenzyme Q10 and CAT groups were decreased vs. normal levels (P < 0.0001). The baseline TAC was consumed in the three groups (P < 0.0001), while final results in the Coenzyme Q10 and CAT groups improved (P < 0.0001). Baseline catalase activity was increased in all groups vs. normal values (P < 0.001), while final levels in the Coenzyme Q10 (P < 0.001) and CAT groups (P < 0.0001) were decreased. GPx behaved similarly to catalase and improved in the final results (P < 0.0001). Discussion Adjunctive antioxidant treatment for 6 months was effective and safe for improving the oxidative stress in NPDR.


Redox Report | 2016

The antioxidant effect of ubiquinone and combined therapy on mitochondrial function in blood cells in non-proliferative diabetic retinopathy: A randomized, double-blind, phase IIa, placebo-controlled study.

Adolfo Daniel Rodríguez-Carrizalez; José Alberto Castellanos-González; Esaú César Martínez-Romero; Guillermo Miller-Arrevillaga; Luis Miguel Román-Pintos; Fermín Paul Pacheco-Moisés; Alejandra Guillermina Miranda-Díaz

Objectives: To evaluate the effect of ubiquinone and combined antioxidant therapy on mitochondrial function in non-proliferative diabetic retinopathy (NPDR) in a randomized, double-blind, phase IIa, placebo-controlled, clinical trial. Three groups of 20 patients were formed: Group 1, ubiquinone; Group 2, combined therapy; and Group 3, placebo (one daily dose for 6 months). Methods: Fluidity of the submitochondrial membrane in platelets was determined by examining intensity of fluorescence between the monomer (Im) and excimer (Ie). Hydrolytic activity of the mitochondrial F0F1-ATPase was evaluated with the spectrophotometric method. Results: Normal, baseline submitochondrial membrane fluidity, 0.24 ± 0.01 Ie/Im, was significantly diminished in the three study groups vs. normal values (P < 0.0001); placebo, 0.14 ± 0.01 Ie/Im; ubiquinone, 0.14 ± 0.01 Ie/Im; and combined therapy, 0.13 ± 0.00 Ie/Im. Afterward, it increased significantly (P < 0.0001), the ubiquinone group 0.22 ± 0.01 Ie/Im, combined therapy group, 0.19 ± 0.01 Ie/Im; with no changes the placebo group. Baseline hydrolytic activity of the F0F1-ATPase enzyme increased in the three study groups vs. normal values (184.50 ± 7.84 nmol PO4), placebo, 304.12 ± 22.83 nmol PO4 (P < 0.002); ubiquinone, 312.41 ± 25.63 nmol PO4 (P < 0.009); and combined therapy, 371.28 ± 33.50 nmol PO4 (P < 0.002). Afterward, a significant decrease the enzymatic activity: ubiquinone, 213.25 ± 14.19 nmol PO4 (P < 0.001); and combined therapy, 225.55 ± 14.48 nmol PO4 (P < 0.0001). Discussion: Mitochondrial dysfunction significantly improved in groups of NPDR patients treated with antioxidants.


Gastroenterology Research and Practice | 2011

Toll-Like Receptors in Secondary Obstructive Cholangiopathy

Alejandra Guillermina Miranda-Díaz; H. Alonso-Martínez; Jaime Hernández-Ojeda; Oscar Arias-Carvajal; Adolfo Daniel Rodríguez-Carrizalez; Luis Miguel Román-Pintos

Secondary obstructive cholangiopathy is characterized by intra- or extrahepatic bile tract obstruction. Liver inflammation and structural alterations develop due to progressive bile stagnation. Most frequent etiologies are biliary atresia in children, and hepatolithiasis, postcholecystectomy bile duct injury, and biliary primary cirrhosis in adults, which causes chronic biliary cholangitis. Bile ectasia predisposes to multiple pathogens: viral infections in biliary atresia; Gram-positive and/or Gram-negative bacteria cholangitis found in hepatolithiasis and postcholecystectomy bile duct injury. Transmembrane toll-like receptors (TLRs) are activated by virus, bacteria, fungi, and parasite stimuli. Even though TLR-2 and TLR-4 are the most studied receptors related to liver infectious diseases, other TLRs play an important role in response to microorganism damage. Acquired immune response is not vertically transmitted and reflects the infectious diseases history of individuals; in contrast, innate immunity is based on antigen recognition by specific receptors designated as pattern recognition receptors and is transmitted vertically through the germ cells. Understanding the mechanisms for bile duct inflammation is essential for the future development of therapeutic alternatives in order to avoid immune-mediated destruction on secondary obstructive cholangiopathy. The role of TLRs in biliary atresia, hepatolithiasis, bile duct injury, and primary biliary cirrhosis is described in this paper.


Oxidative Medicine and Cellular Longevity | 2017

Markers of Oxidative Stress and Inflammation in Ascites and Plasma in Patients with Platinum-Sensitive, Platinum-Resistant, and Platinum-Refractory Epithelial Ovarian Cancer

Juan Carlos Cantón-Romero; Alejandra Guillermina Miranda-Díaz; Jose Luis Bañuelos-Ramírez; Sandra Carrillo-Ibarra; Sonia Sifuentes-Franco; José Alberto Castellanos-González; Adolfo Daniel Rodríguez-Carrizalez

Diverse proinflammatory biomarkers and oxidative stress are strongly associated with advanced epithelial ovarian cancer (EOC). Objective. To determine the behavior of markers of oxidative stress and inflammation in plasma and ascites fluid in patients with platinum-sensitive, platinum-resistant, and platinum-refractory EOC. Methods. A prospective cohort study. The colorimetric method was used to determine levels of the markers 8-isoprostanes (8-IP), lipid peroxidation products (LPO), and total antioxidant capacity (TAC) in plasma and ascites fluid; and with ELISA, the levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were determined in patients with EOC. Results. In ascites fluid, a significant increase in 8-IP versus baseline plasma levels was found (p = 0.002). There was an important leakage of the TAC levels in ascites fluid versus baseline plasma levels (p < 0.001). The IL-6 was elevated in ascites fluid versus baseline plasma levels (p = 0.003), and there were diminished levels of TNF-α in ascites fluid versus baseline plasma levels (p = 0.001). Discussion. We hypothesize that the ascites fluid influences the behavior and dissemination of the tumor. Deregulation between oxidants, antioxidants, and the proinflammatory cytokines was found to vary among platinum-sensitive, platinum-resistant, and platinum-refractory patients.

Collaboration


Dive into the Adolfo Daniel Rodríguez-Carrizalez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Genaro Gabriel Ortiz

Mexican Social Security Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge