Adolfo De Sanctis
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adolfo De Sanctis.
Scientific Reports | 2015
Thomas H. Bointon; Gareth J. F. Jones; Adolfo De Sanctis; Ruth Hill-Pearce; Monica F. Craciun; Saverio Russo
The efficiency of flexible photovoltaic and organic light emitting devices is heavily dependent on the availability of flexible and transparent conductors with at least a similar workfunction to that of Indium Tin Oxide. Here we present the first study of the work function of large area (up to 9 cm2) FeCl3 intercalated graphene grown by chemical vapour deposition on Nickel, and demonstrate values as large as 5.1 eV. Upon intercalation, a charge density per graphene layer of 5 ⋅ 1013 ± 5 ⋅ 1012 cm−2 is attained, making this material an attractive platform for the study of plasmonic excitations in the infrared wavelength spectrum of interest to the telecommunication industry. Finally, we demonstrate the potential of this material for flexible electronics in a transparent circuit on a polyethylene naphthalate substrate.
Science Advances | 2017
Adolfo De Sanctis; Gareth J. F. Jones; Francisco J. Bezares; Monica F. Craciun; Saverio Russo
Quenching thermoelectric effects in graphene leads to an extraordinary increase of the linear dynamic range in photodetectors. Graphene-based photodetectors have demonstrated mechanical flexibility, large operating bandwidth, and broadband spectral response. However, their linear dynamic range (LDR) is limited by graphene’s intrinsic hot-carrier dynamics, which causes deviation from a linear photoresponse at low incident powers. At the same time, multiplication of hot carriers causes the photoactive region to be smeared over distances of a few micrometers, limiting the use of graphene in high-resolution applications. We present a novel method for engineering photoactive junctions in FeCl3-intercalated graphene using laser irradiation. Photocurrent measured at these planar junctions shows an extraordinary linear response with an LDR value at least 4500 times larger than that of other graphene devices (44 dB) while maintaining high stability against environmental contamination without the need for encapsulation. The observed photoresponse is purely photovoltaic, demonstrating complete quenching of hot-carrier effects. These results pave the way toward the design of ultrathin photodetectors with unprecedented LDR for high-definition imaging and sensing.
Scientific Reports | 2017
Ana I. S. Neves; Daniela P. Rodrigues; Adolfo De Sanctis; Elias Torres Alonso; Maria S. Pereira; V. S. Amaral; L.V. Melo; Saverio Russo; Isabel de Schrijver; Helena Alves; Monica F. Craciun
Conducting fibres are essential to the development of e-textiles. We demonstrate a method to make common insulating textile fibres conductive, by coating them with graphene. The resulting fibres display sheet resistance values as low as 600 Ωsq−1, demonstrating that the high conductivity of graphene is not lost when transferred to textile fibres. An extensive microscopic study of the surface of graphene-coated fibres is presented. We show that this method can be employed to textile fibres of different materials, sizes and shapes, and to different types of graphene. These graphene-based conductive fibres can be used as a platform to build integrated electronic devices directly in textiles.
Nanotechnology | 2017
Adolfo De Sanctis; Matthew D. Barnes; Iddo Amit; Monica F. Craciun; Saverio Russo
Graphenes unique photoresponse has been largely used in a multitude of optoelectronics applications ranging from broadband photodetectors to wave-guide modulators. In this work we extend the range of applications to position-sensitive photodetectors (PSDs) using FeCl3-intercalated hexagonal domains of graphene grown by atmospheric pressure chemical vapour deposition (APCVD). The FeCl3-based chemical functionalisation of APCVD graphene crystals is affected by the presence of wrinkles and results in a non-uniform doping of the graphene layers. This doping profile creates multiple p-p+ photoactive junctions which show a linear and bipolar photoresponse with respect to the position of a focused light spot, which is ideal for the realization of a PSD. Our study paves the way towards the fabrication of flexible and transparent PSDs that could be embedded in smart textile and wearable electronics.
Advanced Materials | 2017
Gareth J. F. Jones; Rui M. Pinto; Adolfo De Sanctis; V. Karthik Nagareddy; C. David Wright; Helena Alves; Monica F. Craciun; Saverio Russo
Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge-transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra-broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, the long-range order in rubrene single crystals is utilized to engineer organic-semiconductor-graphene phototransistors surpassing previously reported photogating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 107 A W-1 and a detectivity of 9 × 1011 Jones at room temperature. These findings point toward implementing low-cost, flexible materials for amplified imaging at ultralow light levels.
Nature Communications | 2018
Adolfo De Sanctis; Iddo Amit; S. P. Hepplestone; Monica F. Craciun; Saverio Russo
The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS2. We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.The application of strain to semiconducting materials can be used to engineer electric fields through a varying energy gap. Here, the authors observe an inverse charge-funnel effect in atomically thin HfS2, enabled by strain-induced electric fields.
Nano Letters | 2017
Francisco J. Bezares; Adolfo De Sanctis; J. R. M. Saavedra; Achim Woessner; Pablo Alonso-González; Iban Amenabar; Jianing Chen; Thomas H. Bointon; Siyuan Dai; Michael M. Fogler; D. N. Basov; Rainer Hillenbrand; Monica F. Craciun; F. Javier García de Abajo; Saverio Russo
As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.
npj Flexible Electronics | 2018
Elias Torres Alonso; Daniela P. Rodrigues; Mukond Khetani; Dong-Wook Shin; Adolfo De Sanctis; Hugo Joulie; Isabel de Schrijver; Anna Baldycheva; Helena Alves; Ana I. S. Neves; Saverio Russo; Monica F. Craciun
The true integration of electronics into textiles requires the fabrication of devices directly on the fibre itself using high-performance materials that allow seamless incorporation into fabrics. Woven electronics and opto-electronics, attained by intertwined fibres with complementary functions are the emerging and most ambitious technological and scientific frontier. Here we demonstrate graphene-enabled functional devices directly fabricated on textile fibres and attained by weaving graphene electronic fibres in a fabric. Capacitive touch-sensors and light-emitting devices were produced using a roll-to-roll-compatible patterning technique, opening new avenues for woven textile electronics. Finally, the demonstration of fabric-enabled pixels for displays and position sensitive functions is a gateway for novel electronic skin, wearable electronic and smart textile applications.Wearable electronics: graphene textiles get really smartComplex functionalities have been brought on to the graphene coated textile fibres in a roll-to-roll-compatible fashion for the first time. A collaborative team led by Monica F. Craciun from University of Exeter, UK employs a ‘roll-to-roll’ like method to fabricate graphene-based transparent and flexible functional devices on textile fibres. The scientists develop a universal approach to pattern the graphene in various forms on the tape-shaped polypropylene fibres via a sacrificial photoresist layer. This creates a versatile platform for efficient device prototyping: functional devices such as capacitive touch-sensors and light-emitting device arrays can then be easily integrated. Their methods show high compatibility with industrial scale roll-to-roll and printing techniques, opening the gateway to smart multi-functional textile electronics in the future.
Review of Scientific Instruments | 2018
Adolfo De Sanctis; Jake D. Mehew; Saad Alkhalifa; Callum P. Tate; Ashley White; Adam R. Woodgate; Monica F. Craciun; Saverio Russo
Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.
Materials | 2018
Adolfo De Sanctis; Jake D. Mehew; Monica F. Craciun; Saverio Russo
Graphene and graphene-based materials exhibit exceptional optical and electrical properties with great promise for novel applications in light detection. However, several challenges prevent the full exploitation of these properties in commercial devices. Such challenges include the limited linear dynamic range (LDR) of graphene-based photodetectors, the lack of efficient generation and extraction of photoexcited charges, the smearing of photoactive junctions due to hot-carriers effects, large-scale fabrication and ultimately the environmental stability of the constituent materials. In order to overcome the aforementioned limits, different approaches to tune the properties of graphene have been explored. A new class of graphene-based devices has emerged where chemical functionalisation, hybridisation with light-sensitising materials and the formation of heterostructures with other 2D materials have led to improved performance, stability or versatility. For example, intercalation of graphene with FeCl3 is highly stable in ambient conditions and can be used to define photo-active junctions characterized by an unprecedented LDR while graphene oxide (GO) is a very scalable and versatile material which supports the photodetection from UV to THz frequencies. Nanoparticles and quantum dots have been used to enhance the absorption of pristine graphene and to enable high gain thanks to the photogating effect. In the same way, hybrid detectors made from stacked sequences of graphene and layered transition-metal dichalcogenides enabled a class of devices with high gain and responsivity. In this work, we will review the performance and advances in functionalised graphene and hybrid photodetectors, with particular focus on the physical mechanisms governing the photoresponse, the performance and possible future paths of investigation.