Adriaan Bax
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adriaan Bax.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Justin L. Lorieau; John M. Louis; Charles D. Schwieters; Adriaan Bax
The highly conserved first 23 residues of the influenza hemagglutinin HA2 subunit constitute the fusion domain, which plays a pivotal role in fusing viral and host-cell membranes. At neutral pH, this peptide adopts a tight helical hairpin wedge structure, stabilized by aliphatic hydrogen bonding and charge–dipole interactions. We demonstrate that at low pH, where the fusion process is triggered, the native peptide transiently visits activated states that are very similar to those sampled by a G8A mutant. This mutant retains a small fraction of helical hairpin conformation, in rapid equilibrium with at least two open structures. The exchange rate between the closed and open conformations of the wild-type fusion peptide is ∼40 kHz, with a total open-state population of ∼20%. Transitions to these activated states are likely to play a crucial role in formation of the fusion pore, an essential structure required in the final stage of membrane fusion.
Methods in Enzymology | 2005
Frank Delaglio; Adriaan Bax
A novel approach is described for determining backbone structures of proteins that is based on finding fragments in the protein data bank (PDB). For each fragment in the target protein, usually chosen to be 7-10 residues in length, PDB fragments are selected that best fit to experimentally determined one-bond heteronuclear dipolar couplings and that show agreement between chemical shifts predicted for the PDB fragment and experimental values for the target fragment. These fragments are subsequently refined by simulated annealing to improve agreement with the experimental data. If the lowest-energy refined fragments form a unique structural cluster, this structure is accepted and side chains are added on the basis of a conformational database potential. The sequential backbone assembly process extends the chain by translating an accepted fragment onto it. For several small proteins, with extensive sets of dipolar couplings measured in two alignment media, a unique final structure is obtained that agrees well with structures previously solved by conventional methods. With less dipolar input data, large, oriented fragments of each protein are obtained, but their relative positioning requires either a small set of translationally restraining nuclear Overhauser enhancements (NOEs) or a protocol that optimizes burial of hydrophobic groups and pairing of beta-strands.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Michele Perni; Céline Galvagnion; Alexander S. Maltsev; Georg Meisl; Martin Müller; Pavan Kumar Challa; Julius B. Kirkegaard; Patrick Flagmeier; Samuel I. A. Cohen; Roberta Cascella; Serene W. Chen; Ryan Limboker; Pietro Sormanni; Gabriella T. Heller; Francesco A. Aprile; Nunilo Cremades; Cristina Cecchi; Fabrizio Chiti; Ellen A. A. Nollen; Tuomas P. J. Knowles; Michele Vendruscolo; Adriaan Bax; Michael Zasloff; Christopher M. Dobson
Significance Parkinson’s disease is characterized by the presence in brain tissues of aberrant aggregates primarily formed by the protein α-synuclein. It has been difficult, however, to identify compounds capable of preventing the formation of such deposits because of the complexity of the aggregation process of α-synuclein. By exploiting recently developed highly quantitative in vitro assays, we identify a compound, squalamine, that blocks α-synuclein aggregation, and characterize its mode of action. Our results show that squalamine, by competing with α-synuclein for binding lipid membranes, specifically inhibits the initiation of the aggregation process of α-synuclein and abolishes the toxicity of α-synuclein oligomers in neuronal cells and in an animal model of Parkinson’s disease. The self-assembly of α-synuclein is closely associated with Parkinson’s disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson’s disease and related conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Julien Roche; John M. Louis; Alexander Grishaev; Jinfa Ying; Adriaan Bax
Significance Infection by HIV-1 requires fusion of viral and host cell membranes, a process mediated by viral protein gp41. Although extensive structural detail on both pre- and postfusion gp41 states is available from X-ray crystallography and cryo-EM studies, little is known about the actual transition. This NMR study of a trimeric gp41 ectodomain, which connects viral and host cell membranes in the prefusion state, suggests a fusion model, where this domain unzippers from opposite ends because of the affinity of its two α-helices for viral and host cell membranes. In this model, the change in orientation of the ectodomain helices, which is associated with membrane binding, provides the driving force that pulls the membranes into the close juxtaposition required for fusion. The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid–water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.
Journal of the American Chemical Society | 2011
Justin L. Lorieau; John M. Louis; Adriaan Bax
Biological membranes present a highly fluid environment, and integration of proteins within such membranes is itself highly dynamic: proteins diffuse laterally within the plane of the membrane and rotationally about the normal vector of this plane. We demonstrate that whole-body motions of proteins within a lipid bilayer can be determined from NMR 15N relaxation rates collected for different-sized bicelles. The importance of membrane integration and interaction is particularly acute for proteins and peptides that function on the membrane itself, as is the case for pore-forming and fusion-inducing proteins. For the influenza hemagglutinin fusion peptide, which lies on the surface of membranes and catalyzes the fusion of membranes and vesicles, we found large-amplitude, rigid-body wobbling motions on the nanosecond time scale relative to the lipid bilayer. This behavior complements prior analyses where data were commonly interpreted in terms of a static oblique angle of insertion for the fusion peptide with respect to the membrane. Quantitative disentanglement of the relative motions of two interacting objects by systematic variation of the size of one is applicable to a wide range of systems beyond protein–membrane interactions.
Journal of the American Chemical Society | 2012
Alexander Grishaev; Jinfa Ying; Adriaan Bax
Hydrogen atom positions of nucleotide bases in RNA structures solved by X-ray crystallography are commonly derived from heavy-atom coordinates by assuming idealized geometries. In particular, N1–H1 vectors in G and N3–H3 vectors in U are commonly positioned to coincide with the bisectors of their respective heavy-atom angles. We demonstrate that quantum-mechanical optimization of the hydrogen positions relative to their heavy-atom frames considerably improves the fit of experimental residual dipolar couplings to structural coordinates. The calculations indicate that deviations of the imino N–H vectors in RNA U and G bases result from H-bonding within the base pair and are dominated by the attractive interaction between the H atom and the electron density surrounding the H-bond-acceptor atom. DFT optimization of H atom positions is impractical in structural biology studies. We therefore have developed an empirical relation that predicts imino N–H vector orientations from the heavy-atom coordinates of the base pair. This relation agrees very closely with the DFT results, permitting its routine application in structural studies.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Cyril Charlier; T. Reid Alderson; Joseph M. Courtney; Jinfa Ying; Philip A. Anfinrud; Adriaan Bax
Significance Development of specialized instrumentation enables rapid switching of the hydrostatic pressure inside an operating NMR spectrometer. This technology allows observation of protein signals during the repeated folding process. Applied to ubiquitin, a previously extensively studied model of protein folding, the methodology reveals an initially highly dynamic state that deviates relatively little from random coil behavior but also provides evidence for numerous repeatedly failed folding events, previously only observed in computer simulations. Above room temperature, direct NMR evidence shows a ∼50% fraction of proteins folding through an on-pathway kinetic intermediate, thereby revealing two equally efficient parallel folding pathways. In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded and unfolded states, their thermodynamic equilibrium can be altered by varying the hydrostatic pressure. Using a pressure-sensitized mutant of ubiquitin, we demonstrate that rapidly switching the pressure within an NMR sample cell enables study of the unfolded protein under native conditions and, vice versa, study of the native protein under denaturing conditions. This approach makes it possible to record 2D and 3D NMR spectra of the unfolded protein at atmospheric pressure, providing residue-specific information on the folding process. 15N and 13C chemical shifts measured immediately after dropping the pressure from 2.5 kbar (favoring unfolding) to 1 bar (native) are close to the random-coil chemical shifts observed for a large, disordered peptide fragment of the protein. However, 15N relaxation data show evidence for rapid exchange, on a ∼100-μs timescale, between the unfolded state and unstable, structured states that can be considered as failed folding events. The NMR data also provide direct evidence for parallel folding pathways, with approximately one-half of the protein molecules efficiently folding through an on-pathway kinetic intermediate, whereas the other half fold in a single step. At protein concentrations above ∼300 μM, oligomeric off-pathway intermediates compete with folding of the native state.
Frontiers in Immunology | 2018
Kannan Natarajan; Jiangsheng Jiang; Nathan May; Michael G. Mage; Lisa F. Boyd; Andrew C. McShan; Nikolaos G. Sgourakis; Adriaan Bax; David H. Margulies
Antigen presentation is a cellular process that involves a number of steps, beginning with the production of peptides by proteolysis or aberrant synthesis and the delivery of peptides to cellular compartments where they are loaded on MHC class I (MHC-I) or MHC class II (MHC-II) molecules. The selective loading and editing of high-affinity immunodominant antigens is orchestrated by molecular chaperones: tapasin/TAP-binding protein, related for MHC-I and HLA-DM for MHC-II. Once peptide/MHC (pMHC) complexes are assembled, following various steps of quality control, they are delivered to the cell surface, where they are available for identification by αβ receptors on CD8+ or CD4+ T lymphocytes. In addition, recognition of cell surface peptide/MHC-I complexes by natural killer cell receptors plays a regulatory role in some aspects of the innate immune response. Many of the components of the pathways of antigen processing and presentation and of T cell receptor (TCR)-mediated signaling have been studied extensively by biochemical, genetic, immunological, and structural approaches over the past several decades. Until recently, however, dynamic aspects of the interactions of peptide with MHC, MHC with molecular chaperones, or of pMHC with TCR have been difficult to address experimentally, although computational approaches such as molecular dynamics (MD) simulations have been illuminating. Studies exploiting X-ray crystallography, cryo-electron microscopy, and multidimensional nuclear magnetic resonance (NMR) spectroscopy are beginning to reveal the importance of molecular flexibility as it pertains to peptide loading onto MHC molecules, the interactions between pMHC and TCR, and subsequent TCR-mediated signals. In addition, recent structural and dynamic insights into how molecular chaperones define peptide selection and fine-tune the MHC displayed antigen repertoire are discussed. Here, we offer a review of current knowledge that highlights experimental data obtained by X-ray crystallography and multidimensional NMR methodologies. Collectively, these findings strongly support a multifaceted role for protein plasticity and conformational dynamics throughout the antigen processing and presentation pathway in dictating antigen selection and recognition.
Biochemistry | 1990
C. P. J. Glaudemans; L. Lerner; G. D. Daves; Pavol Kováč; R. Venable; Adriaan Bax
Journal of the American Chemical Society | 2001
James J. Chou; Adriaan Bax