Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriaan M. Dokter is active.

Publication


Featured researches published by Adriaan M. Dokter.


Journal of the Royal Society Interface | 2011

Bird migration flight altitudes studied by a network of operational weather radars

Adriaan M. Dokter; Felix Liechti; Herbert Stark; Laurent Delobbe; Pierre Tabary; Iwan Holleman

A fully automated method for the detection and quantification of bird migration was developed for operational C-band weather radar, measuring bird density, speed and direction as a function of altitude. These weather radar bird observations have been validated with data from a high-accuracy dedicated bird radar, which was stationed in the measurement volume of weather radar sites in The Netherlands, Belgium and France for a full migration season during autumn 2007 and spring 2008. We show that weather radar can extract near real-time bird density altitude profiles that closely correspond to the density profiles measured by dedicated bird radar. Doppler weather radar can thus be used as a reliable sensor for quantifying bird densities aloft in an operational setting, which—when extended to multiple radars—enables the mapping and continuous monitoring of bird migration flyways. By applying the automated method to a network of weather radars, we observed how mesoscale variability in weather conditions structured the timing and altitude profile of bird migration within single nights. Bird density altitude profiles were observed that consisted of multiple layers, which could be explained from the distinct wind conditions at different take-off sites. Consistently lower bird densities are recorded in The Netherlands compared with sites in France and eastern Belgium, which reveals some of the spatial extent of the dominant Scandinavian flyway over continental Europe.


Journal of Theoretical Biology | 2012

Quantifying flow-assistance and implications for movement research.

Michael U. Kemp; Judy Shamoun-Baranes; E.E. van Loon; James D. McLaren; Adriaan M. Dokter; Willem Bouten

The impact that flows of air and water have on organisms moving through these environments has received a great deal of attention in theoretical and empirical studies. There are many behavioral strategies that animals can adopt to interact with these flows, and by assuming one of these strategies a researcher can quantify the instantaneous assistance an animal derives from a particular flow. Calculating flow-assistance in this way can provide an elegant simplification of a multivariate problem to a univariate one and has many potential uses; however, the resultant flow-assistance values are inseparably linked to the specific behavioral strategy assumed. We expect that flow-assistance may differ considerably depending on the behavioral strategy assumed and the accuracy of the assumptions associated with that strategy. Further, we expect that the magnitude of these differences may depend on the specific flow conditions. We describe equations to quantify flow-assistance of increasing complexity (i.e. more assumptions), focusing on the behavioral strategies assumed by each. We illustrate differences in suggested flow-assistance between these equations and calculate the sensitivity of each equation to uncertainty in its particular assumptions for a range of theoretical flow conditions. We then simulate trajectories that occur if an animal behaves according to the assumptions inherent in these equations. We find large differences in flow-assistance between the equations, particularly with increasing lateral flow and increasingly supportive axial flow. We find that the behavioral strategy assumed is generally more influential on the perception of flow-assistance than a small amount of uncertainty in the specification of an animals speed (i.e. <5 ms(-1)) or preferred direction of movement (i.e. <10°). Using simulated trajectories, we show that differences between flow-assistance equations can accumulate over time and distance. The appropriateness and potential biases of an equation to quantify flow-assistance, and the behavioral assumptions the equation implies, must be considered in the context of the system being studied, particularly when interpreting results. Thus, we offer this framework for researchers to evaluate the suitability of a particular flow-assistance equation and assess the implications of its use.


Movement ecology | 2014

Continental-scale radar monitoring of the aerial movements of animals

Judy Shamoun-Baranes; José A. Alves; Silke Bauer; Adriaan M. Dokter; Ommo Hüppop; Jarmo Koistinen; H. Leijnse; Felix Liechti; Hans van Gasteren; Jason W. Chapman

Billions of organisms travel through the air, influencing population dynamics, community interactions, ecosystem services and our lives in many different ways. Yet monitoring these movements are technically very challenging. During the last few decades, radars have increasingly been used to study the aerial movements of birds, bats and insects, yet research efforts have often been local and uncoordinated between research groups. However, a network of operational weather radars is continuously recording atmospheric conditions all over Europe and these hold enormous potential for coordinated, continental-scale studies of the aerial movements of animals.The European Network for the Radar surveillance of Animal Movement (ENRAM) is a new e-COST research network aiming exactly at exploring this potential. The main objective of ENRAM is to merge expertise to utilize weather radars to monitor the aerial movement of animals across Europe for a broad range of stakeholders at an unprecedented scale and enable researchers to study the causes and consequences of movement. In this paper we describe the aims of ENRAM in more detail and the challenges researchers will address, provide an overview of aero-ecological studies using radar, and present some of the opportunities that a large sensor network can provide for movement ecology research.


PLOS ONE | 2013

High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

Adriaan M. Dokter; Judy Shamoun-Baranes; Michael U. Kemp; Sander Tijm; Iwan Holleman

At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.


Nature | 2016

Unexpected diversity in socially synchronized rhythms of shorebirds

Martin Bulla; Mihai Valcu; Adriaan M. Dokter; Alexei G. Dondua; András Kosztolányi; Anne L. Rutten; Barbara Helm; Brett K. Sandercock; Bruce Casler; Bruno J. Ens; Caleb S. Spiegel; Chris J. Hassell; Clemens Küpper; Clive Minton; Daniel Burgas; David B. Lank; David C. Payer; Egor Y. Loktionov; Erica Nol; Eunbi Kwon; Fletcher M. Smith; H. River Gates; Hana Vitnerová; Hanna Prüter; James A. Johnson; James J. H. St Clair; Jean-François Lamarre; Jennie Rausch; Jeroen Reneerkens; Jesse R. Conklin

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent’s incubation bout varied from 1–19 h, whereas period length—the time in which a parent’s probability to incubate cycles once between its highest and lowest value—varied from 6–43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light–dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.


Animal Behaviour | 2013

Twilight ascents by common swifts, Apus apus, at dawn and dusk: acquisition of orientation cues?

Adriaan M. Dokter; Susanne Åkesson; Hans Beekhuis; Willem Bouten; Luit Buurma; Hans van Gasteren; Iwan Holleman

Common swifts are specialist flyers spending most of their life aloft, including night-time periods when this species roosts on the wing. Nocturnal roosting is preceded by a vertical ascent in twilight conditions towards altitudes of up to 2.5 km, behaviour previously explained as flight altitude selection for sleeping. We examined the nocturnal flight behaviour of swifts, as uniquely identified by a Doppler weather radar in central Netherlands using continuous measurements during two consecutive breeding seasons. Common swifts performed twilight ascents not only at dusk but also at dawn, which casts new light on the purpose of these ascents. Dusk and dawn ascents were mirror images of each other when timereferenced to the moment of sunset and sunrise, suggesting that the acquisition of twilight-specific light-based cues plays an important role in the progression of the ascents. Ascent height was well explained by the altitude of the 280 K isotherm, and was not significantly related to wind, cloud base height, humidity or the presence of nocturnal insects. We hypothesize that swifts profile the state of the atmospheric boundary layer during twilight ascents and/or attempt to maximize their perceptual range for visual access to distant horizontal landmarks, including surrounding weather. We compare twilight profiling by swifts with vertical twilight movements observed in other taxa, proposed to be related to orientation and navigation.


Journal of the Royal Society Interface | 2014

Optimal orientation in flows: providing a benchmark for animal movement strategies.

James D. McLaren; Judy Shamoun-Baranes; Adriaan M. Dokter; Raymond H. G. Klaassen; Willem Bouten

Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animals self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity.


PLOS ONE | 2013

Bird radar validation in the field by time-referencing line-transect surveys

Adriaan M. Dokter; M.J. Baptist; Bruno J. Ens; Karen L. Krijgsveld; E. Emiel van Loon

Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.


Proceedings of the National Academy of Sciences of the United States of America | 2017

High-intensity urban light installation dramatically alters nocturnal bird migration

Benjamin M. Van Doren; Kyle G. Horton; Adriaan M. Dokter; Holger Klinck; Susan B. Elbin; Andrew Farnsworth

Significance Artificial light at night is a novel stimulus in the evolutionary history of nocturnal animals. Light pollution can significantly alter these organisms’ behaviors, from migration to foraging to vocal communication. Nocturnally migrating birds are particularly susceptible to artificial light because of adaptations and requirements for navigating and orienting in darkness. However, light’s effects on in-flight behaviors have not been well quantified, especially in urbanized environments. Here we report that an iconic urban light installation dramatically altered multiple behaviors of nocturnally migrating birds—but these effects disappeared when lights were extinguished. We recommend selective removal of light pollution during nights with substantial bird migration to mitigate negative effects on birds, in particular collisions with lighted structures. Billions of nocturnally migrating birds move through increasingly photopolluted skies, relying on cues for navigation and orientation that artificial light at night (ALAN) can impair. However, no studies have quantified avian responses to powerful ground-based light sources in urban areas. We studied effects of ALAN on migrating birds by monitoring the beams of the National September 11 Memorial & Museums “Tribute in Light” in New York, quantifying behavioral responses with radar and acoustic sensors and modeling disorientation and attraction with simulations. This single light source induced significant behavioral alterations in birds, even in good visibility conditions, in this heavily photopolluted environment, and to altitudes up to 4 km. We estimate that the installation influenced ≈1.1 million birds during our study period of 7 d over 7 y. When the installation was illuminated, birds aggregated in high densities, decreased flight speeds, followed circular flight paths, and vocalized frequently. Simulations revealed a high probability of disorientation and subsequent attraction for nearby birds, and bird densities near the installation exceeded magnitudes 20 times greater than surrounding baseline densities during each year’s observations. However, behavioral disruptions disappeared when lights were extinguished, suggesting that selective removal of light during nights with substantial bird migration is a viable strategy for minimizing potentially fatal interactions among ALAN, structures, and birds. Our results also highlight the value of additional studies describing behavioral patterns of nocturnally migrating birds in powerful lights in urban areas as well as conservation implications for such lighting installations.


Behavioral Ecology | 2011

Birds flee en mass from New Year’s Eve fireworks

Judy Shamoun-Baranes; Adriaan M. Dokter; Hans van Gasteren; E. Emiel van Loon; H. Leijnse; Willem Bouten

Anthropogenic disturbances of wildlife, such as noise, human presence, hunting activity, and motor vehicles, are becoming an increasing concern in conservation biology. Fireworks are an important part of celebrations worldwide, and although humans often find fireworks spectacular, fireworks are probably perceived quite differently by wild animals. Behavioral responses to fireworks are difficult to study at night, and little is known about the negative effects fireworks may have on wildlife. Every year, thousands of tons of fireworks are lit by civilians on New Year’s Eve in the Netherlands. Using an operational weather radar, we quantified the reaction of birds to fireworks in 3 consecutive years. Thousands of birds took flight shortly after midnight, with high aerial movements lasting at least 45 min and peak densities measured at 500 m altitude. The highest densities were observed over grasslands and wetlands, including nature conservation sites, where thousands of waterfowl rest and feed. The Netherlands is the most important winter staging area for several species of waterfowl in Europe. We estimate that hundreds of thousands of birds in the Netherlands take flight due to fireworks. The spatial and temporal extent of disturbance is substantial, and potential consequences are discussed. Weather radar provides a unique opportunity to study the reaction of birds to fireworks, which has otherwise remained elusive.

Collaboration


Dive into the Adriaan M. Dokter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Leijnse

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Liechti

Swiss Ornithological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno J. Ens

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge