Adriaan Versteeg
VU University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adriaan Versteeg.
Neurology | 2013
Hanneke E. Hulst; Martijn D. Steenwijk; Adriaan Versteeg; Petra J. W. Pouwels; Hugo Vrenken; Bernard M. J. Uitdehaag; C.H. Polman; Jeroen J. G. Geurts; Frederik Barkhof
Objective: To investigate whether extent and severity of white matter (WM) damage, as measured with diffusion tensor imaging (DTI), can distinguish cognitively preserved (CP) from cognitively impaired (CI) multiple sclerosis (MS) patients. Methods: Conventional MRI and DTI data were acquired from 55 MS patients (35 CP, 20 CI) and 30 healthy controls (HC). Voxelwise analyses were used to investigate fractional anisotropy (FA), mean diffusivity, radial diffusivity, and axial diffusivity of a WM skeleton. Regional gray matter volume was quantified and lesion probability maps were generated. Results: Compared to HCs, decreased FA was found in 49% of the investigated WM skeleton in CP patients and in 76% of the investigated WM in CI patients. Several brain areas that showed reduced FA in both patient groups were significantly worse in CI patients, i.e, corpus callosum, superior and inferior longitudinal fasciculus, corticospinal tracts, forceps major, cingulum, and fornices. In CI patients, WM integrity damage was additionally seen in cortical brain areas, thalamus, uncinate fasciculus, brainstem, and cerebellum. These findings were independent of lesion location and regional gray matter volume, since no differences were found between the groups. Conclusion: CI patients diverged from CP patients only on DTI metrics. WM integrity changes were found in areas that are highly relevant for cognition in the CI patients but not in the CP patients. These WM changes are therefore thought to be related to the cognitive deficits and suggest that DTI might be a powerful tool when monitoring cognitive impairment in MS.
Neurobiology of Aging | 2013
Christiane Möller; Hugo Vrenken; L. Jiskoot; Adriaan Versteeg; Frederik Barkhof; P. Scheltens; W.M. van der Flier
We assessed patterns of gray matter atrophy according to-age-at-onset in a large sample of 215 Alzheimers disease (AD) patients and 129 control subjects with voxel-based morphometry using 3-Tesla 3D T1-weighted magnetic resonance imaging. Local gray matter amounts were compared between late- and early-onset AD patients and older and younger control subjects, taking into account the effect of apolipoprotein E. Additionally, combined effects of age and diagnosis on volumes of hippocampus and precuneus were assessed. Compared with age-matched control subjects, late-onset AD patients exhibited atrophy of the hippocampus, right temporal lobe, and cerebellum, whereas early-onset AD patients showed gray matter atrophy in hippocampus, temporal lobes, precuneus, cingulate gyrus, and inferior frontal cortex. Direct comparisons between late- and early-onset AD patients revealed more pronounced atrophy of precuneus in early-onset AD patients and more severe atrophy in medial temporal lobe in late-onset AD patients. Age and diagnosis independently affected the hippocampus; moreover, the interaction between age and diagnosis showed that precuneus atrophy was most prominent in early-onset AD patients. Our results suggest that patterns of atrophy might vary in the spectrum of AD.
Neurology | 2014
Rik Ossenkoppele; W.M. van der Flier; Sander C.J. Verfaillie; Hugo Vrenken; Adriaan Versteeg; R.A. van Schijndel; Sietske A.M. Sikkes; Jos W. R. Twisk; Sofie Adriaanse; Marissa D. Zwan; Ronald Boellaard; Albert D. Windhorst; Frederik Barkhof; P. Scheltens; Adriaan A. Lammertsma; B.N.M. van Berckel
Objective: To assess how amyloid deposition, glucose hypometabolism, and cerebral atrophy affect neuropsychological performance in patients with Alzheimer disease (AD) dementia, patients with mild cognitive impairment (MCI), and controls over time. Methods: A total of 41 patients with AD dementia, 28 patients with MCI, and 19 controls underwent [11C]–Pittsburgh compound B (11C-PiB) and [18F]-2-fluoro-2-deoxy-d-glucose (18F-FDG)–PET and MRI scans at baseline. We extracted global binding potential for 11C-PiB, the number of abnormal voxels for 18F-FDG, and gray matter volumes using SIENAX for MRI as measures of amyloid, hypometabolism, and atrophy. In addition, repeat neuropsychological testing was performed, including memory, attention, language, and executive tasks (mean follow-up 2.2 ± 0.7 years). Cross-sectional and longitudinal relationships between imaging markers and cognition were assessed using linear mixed models, including terms for the imaging markers, time, sex, age, diagnosis, and interactions for imaging marker × time and imaging marker × time × diagnosis. Results: Linear mixed models showed that baseline hypometabolism and atrophy were associated with poorer baseline performance on attention and executive functions (p < 0.05), whereas amyloid was not related to baseline cognition. Hypometabolism and amyloid were strongly associated with longitudinal decline in essentially all cognitive domains (pinteraction < 0.05), whereas atrophy was related specifically to future decline in Mini-Mental State Examination and memory (pinteraction < 0.05). Conclusion: Glucose hypometabolism and brain atrophy were associated with concurrent cognitive function, whereas brain amyloid was not. Amyloid deposition and glucose hypometabolism were predictors for decline of a wide variety of cognitive functions, while brain atrophy specifically predicted memory deterioration.
Journal of Alzheimer's Disease | 2015
Christiane Möller; Nikki Dieleman; W.M. van der Flier; Adriaan Versteeg; Yolande A.L. Pijnenburg; P. Scheltens; Frederik Barkhof; Hugo Vrenken
BACKGROUND The involvement of frontostriatal circuits in frontotemporal dementia (FTD) suggests that deep gray matter structures (DGM) may be affected in this disease. OBJECTIVE We investigated whether volumes of DGM structures differed between patients with behavioral variant FTD (bvFTD), Alzheimers disease (AD), and subjective complaints (SC) and explored relationships between DGM structures, cognition, and neuropsychiatric functioning. METHODS For this cross-sectional study, we included 24 patients with FTD and matched them based on age, gender, and education at a ratio of 1:3 to 72 AD patients and 72 patients with SC who served as controls. Volumes of hippocampus, amygdala, thalamus, caudate nucleus, putamen, globus pallidus, and nucleus accumbens were estimated by automated segmentation of 3D T1-weighted MRI. MANOVA with Bonferroni adjusted post-hoc tests was used to compare volumes between groups. Relationships between volumes, cognition, and neuropsychiatric functioning were examined using multivariate linear regression and Spearman correlations. RESULTS Nucleus accumbens and caudate nucleus discriminated all groups, with most severe atrophy in FTD. Globus pallidus volumes were smallest in FTD and discriminated FTD from AD and SC. Hippocampus, amygdala, thalamus, and putamen were smaller in both dementia groups compared to SC. Associations between amygdala and memory were found to be different in AD and FTD. Globus pallidus and nucleus accumbens were related to attention and executive functioning in FTD. CONCLUSION Nucleus accumbens, caudate nucleus, and globus pallidus were more severely affected in FTD than in AD and SC. The associations between cognition and DGM structures varied between the diagnostic groups. The observed difference in volume of these DGM structures supports the idea that next to frontal cortical atrophy, DGM structures, as parts of the frontal circuits, are damaged in FTD rather than in AD.
European Radiology | 2014
Christiane Möller; Wiesje M. van der Flier; Adriaan Versteeg; Marije R. Benedictus; Mike P. Wattjes; Esther L. G. M. Koedam; Philip Scheltens; Frederik Barkhof; Hugo Vrenken
AbstractObjectivesValidate the four-point visual rating scale for posterior cortical atrophy (PCA) on magnetic resonance images (MRI) through quantitative grey matter (GM) volumetry and voxel-based morphometry (VBM) to justify its use in clinical practice.MethodsTwo hundred twenty-nine patients with probable Alzheimer’s disease and 128 with subjective memory complaints underwent 3T MRI. PCA was rated according to the visual rating scale. GM volumes of six posterior structures and the total posterior region were extracted using IBASPM and compared among PCA groups. To determine which anatomical regions contributed most to the visual scores, we used binary logistic regression. VBM compared local GM density among groups.ResultsPatients were categorised according to their PCA scores: PCA-0 (n = 122), PCA-1 (n = 143), PCA-2 (n = 79), and PCA-3 (n = 13). All structures except the posterior cingulate differed significantly among groups. The inferior parietal gyrus volume discriminated the most between rating scale levels. VBM showed that PCA-1 had a lower GM volume than PCA-0 in the parietal region and other brain regions, whereas between PCA-1 and PCA-2/3 GM atrophy was mostly restricted to posterior regions.ConclusionsThe visual PCA rating scale is quantitatively validated and reliably reflects GM atrophy in parietal regions, making it a valuable tool for the daily radiological assessment of dementia.Key Points• Visual rating scale reflects grey matter atrophy in posterior brain regions. • Different PCA scores corresponded well to different quantitative degrees of atrophy. • Inferior parietal gyrus volume influenced assessment based on the visual rating scale. • This simple visual rating scale makes it useful for radiological dementia assessment.
PLOS ONE | 2016
Veronica Popescu; Menno M. Schoonheim; Adriaan Versteeg; Nimisha Chaturvedi; Marianne Jonker; Renee X. de Menezes; Francisca Gallindo Garre; Bernard M. J. Uitdehaag; Frederik Barkhof; Hugo Vrenken
Background Studies disagree on the location of grey matter (GM) atrophy in the multiple sclerosis (MS) brain. Aim To examine the consistency between FSL, FreeSurfer, SPM for GM atrophy measurement (for volumes, patient/control discrimination, and correlations with cognition). Materials and Methods 127 MS patients and 50 controls were included and cortical and deep grey matter (DGM) volumetrics were performed. Consistency of volumes was assessed with Intraclass Correlation Coefficient/ICC. Consistency of patients/controls discrimination was assessed with Cohen’s d, t-tests, MANOVA and a penalized double-loop logistic classifier. Consistency of association with cognition was assessed with Pearson correlation coefficient and ANOVA. Voxel-based morphometry (SPM-VBM and FSL-VBM) and vertex-wise FreeSurfer were used for group-level comparisons. Results The highest volumetry ICC were between SPM and FreeSurfer for cortical regions, and the lowest between SPM and FreeSurfer for DGM. The caudate nucleus and temporal lobes had high consistency between all software, while amygdala had lowest volumetric consistency. Consistency of patients/controls discrimination was largest in the DGM for all software, especially for thalamus and pallidum. The penalized double-loop logistic classifier most often selected the thalamus, pallidum and amygdala for all software. FSL yielded the largest number of significant correlations. DGM yielded stronger correlations with cognition than cortical volumes. Bilateral putamen and left insula volumes correlated with cognition using all methods. Conclusion GM volumes from FreeSurfer, FSL and SPM are different, especially for cortical regions. While group-level separation between MS and controls is comparable, correlations between regional GM volumes and clinical/cognitive variables in MS should be cautiously interpreted.
Human Brain Mapping | 2016
Veronica Popescu; Roel Klaver; Adriaan Versteeg; Pieter Voorn; Jos W. R. Twisk; Frederik Barkhof; Jeroen J. G. Geurts; Hugo Vrenken
Grey matter (GM) atrophy is a prominent aspect of multiple sclerosis pathology and an important outcome in studies. GM atrophy measurement requires accurate GM segmentation. Several methods are used in vivo for measuring GM volumes in MS, but assessing their validity in vivo remains challenging. In this postmortem study, we evaluated the correlation between postmortem MRI cortical volume or thickness and the cortical thickness measured on histological sections. Sixteen MS brains were scanned in situ using 3DT1‐weighted MRI and these images were used to measure regional cortical volume using FSL‐SIENAX, FreeSurfer, and SPM, and regional cortical thickness using FreeSurfer. Subsequently, cortical thickness was measured histologically in 5 systematically sampled cortical areas. Linear regression analyses were used to evaluate the relation between MRI regional cortical volume or thickness and histological cortical thickness to determine which postprocessing technique was most valid. After correction for multiple comparisons, we observed a significant correlation with the histological cortical thickness for FSL‐SIENAX cortical volume with manual editing (std. β = 0.345, adjusted R2 = 0.105, P = 0.005), and FreeSurfer cortical volume with manual editing (std. β = 0.379, adjusted R2 = 0.129, P = 0.003). In addition, there was a significant correlation between FreeSurfer cortical thickness with manual editing and histological cortical thickness (std. β = 0.381, adjusted R2 = 0.130, P = 0.003). The results support the use of FSL‐SIENAX and FreeSurfer in cases of severe MS pathology. Interestingly none of the methods were significant in automated mode, which supports the use of manual editing to improve the automated segmentation. Hum Brain Mapp 37:2223–2233, 2016.
Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring | 2016
Sander C.J. Verfaillie; Betty M. Tijms; Adriaan Versteeg; Marije R. Benedictus; Femke H. Bouwman; Philip Scheltens; Frederik Barkhof; Hugo Vrenken; Wiesje M. van der Flier
We aimed to investigate if thinner cortex of the Alzheimers disease (AD)‐signature region was related to clinical progression in patients with subjective cognitive decline (SCD).
NeuroImage: Clinical | 2015
Christiane Möller; Anne Hafkemeijer; Yolande A.L. Pijnenburg; Serge A.R.B. Rombouts; Jeroen van der Grond; Elise G.P. Dopper; John C. van Swieten; Adriaan Versteeg; Petra J. W. Pouwels; Frederik Barkhof; Philip Scheltens; Hugo Vrenken; Wiesje M. van der Flier
We investigated the ability of cortical and subcortical gray matter (GM) atrophy in combination with white matter (WM) integrity to distinguish behavioral variant frontotemporal dementia (bvFTD) from Alzheimers disease (AD) and from controls using voxel-based morphometry, subcortical structure segmentation, and tract-based spatial statistics. To determine which combination of MR markers differentiated the three groups with the highest accuracy, we conducted discriminant function analyses. Adjusted for age, sex and center, both types of dementia had more GM atrophy, lower fractional anisotropy (FA) and higher mean (MD), axial (L1) and radial diffusivity (L23) values than controls. BvFTD patients had more GM atrophy in orbitofrontal and inferior frontal areas than AD patients. In addition, caudate nucleus and nucleus accumbens were smaller in bvFTD than in AD. FA values were lower; MD, L1 and L23 values were higher, especially in frontal areas of the brain for bvFTD compared to AD patients. The combination of cortical GM, hippocampal volume and WM integrity measurements, classified 97–100% of controls, 81–100% of AD and 67–75% of bvFTD patients correctly. Our results suggest that WM integrity measures add complementary information to measures of GM atrophy, thereby improving the classification between AD and bvFTD.
Psychiatry Research-neuroimaging | 2016
Keith S. Cover; Ronald A. van Schijndel; Adriaan Versteeg; Kelvin K. Leung; Emma R. Mulder; Remko A. Jong; Peter J. Visser; Alberto Redolfi; Jérôme Revillard; Baptiste Grenier; David Manset; Soheil Damangir; Paolo Bosco; Hugo Vrenken; Bob W. van Dijk; Giovanni B. Frisoni; Frederik Barkhof
The purpose of this study is to assess the reproducibility of hippocampal atrophy rate measurements of commonly used fully-automated algorithms in Alzheimer disease (AD). The reproducibility of hippocampal atrophy rate for FSL/FIRST, AdaBoost, FreeSurfer, MAPS independently and MAPS combined with the boundary shift integral (MAPS-HBSI) were calculated. Back-to-back (BTB) 3D T1-weighted MPRAGE MRI from the Alzheimers Disease Neuroimaging Initiative (ADNI1) study at baseline and year one were used. Analysis on 3 groups of subjects was performed - 562 subjects at 1.5T, a 75 subject group that also had manual segmentation and 111 subjects at 3T. A simple and novel statistical test based on the binomial distribution was used that handled outlying data points robustly. Median hippocampal atrophy rates were -1.1%/year for healthy controls, -3.0%/year for mildly cognitively impaired and -5.1%/year for AD subjects. The best reproducibility was observed for MAPS-HBSI (1.3%), while the other methods tested had reproducibilities at least 50% higher at 1.5T and 3T which was statistically significant. For a clinical trial, MAPS-HBSI should require less than half the subjects of the other methods tested. All methods had good accuracy versus manual segmentation. The MAPS-HBSI method has substantially better reproducibility than the other methods considered.