Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrián A. Vojnov is active.

Publication


Featured researches published by Adrián A. Vojnov.


The Plant Cell | 2011

Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato

Mohamed El Oirdi; Taha Abd El Rahman; Luciano A. Rigano; Abdelbasset El Hadrami; María Cecilia Rodríguez; Fouad Daayf; Adrián A. Vojnov; Kamal Bouarab

Botrytis cinerea is a necrotrophic pathogen that causes grey mould disease in a broad host range, including tomato, grapes, potato, and strawberry. Here, we report that B. cinerea secretes a virulence factor that hijacks the plant’s own crosstalk network to promote disease development. Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant’s defense system and to spread within the host.


Molecular Plant-microbe Interactions | 2007

Biofilm Formation, Epiphytic Fitness, and Canker Development in Xanthomonas axonopodis pv. citri

Luciano A. Rigano; Florencia Siciliano; Ramón Enrique; Lorena Noelia Sendín; Paula Filippone; Pablo Torres; Julia Qüesta; J. Maxwell Dow; Atilio Pedro Castagnaro; Adrián A. Vojnov; María Rosa Marano

The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.


Plant Physiology | 2008

Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor.

Gustavo E. Gudesblat; Pablo Torres; Adrián A. Vojnov

Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3.


Plant Physiology | 2006

Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition

Maximina H. Yun; Pablo Torres; Mohamed El Oirdi; Luciano A. Rigano; Rocío González-Lamothe; María Rosa Marano; Atilio Pedro Castagnaro; Marcelo A. Dankert; Kamal Bouarab; Adrián A. Vojnov

Xanthan is the major exopolysaccharide secreted by Xanthomonas spp. Despite its diverse roles in bacterial pathogenesis of plants, little is known about the real implication of this molecule in Xanthomonas pathogenesis. In this study we show that in contrast to Xanthomonas campestris pv campestris strain 8004 (wild type), the xanthan minus mutant (strain 8397) and the mutant strain 8396, which is producing truncated xanthan, fail to cause disease in both Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana) plants. In contrast to wild type, 8397 and 8396 strains induce callose deposition in N. benthamiana and Arabidopsis plants. Interestingly, treatment with xanthan but not truncated xanthan, suppresses the accumulation of callose and enhances the susceptibility of both N. benthamiana and Arabidopsis plants to 8397 and 8396 mutant strains. Finally, in concordance, we also show that treatment with an inhibitor of callose deposition previous to infection induces susceptibility to 8397 and 8396 strains. Thus, xanthan suppression effect on callose deposition seems to be important for Xanthomonas infectivity.


Molecular Plant-microbe Interactions | 2001

Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta.

Adrián A. Vojnov; Holly Slater; Michael J. Daniels; J. Maxwell Dow

The gum gene cluster of Xanthomonas campestris pv. campestris comprises 12 genes whose products are involved in the biosynthesis of the extracellular polysaccharide xanthan. These genes are expressed primarily as an operon from a promoter upstream of the first gene, gumB. Although the regulation of xanthan synthesis in vitro has been well studied, nothing is known of its regulation in planta. A reporter plasmid was constructed in which the promoter region of the gum operon was fused to gusA. In liquid cultures, the expression of the gumgusA reporter was correlated closely with the production of xanthan, although a low basal level of beta-glucuronidase activity was seen in the absence of added carbon sources when xanthan production was very low. The expression of the gumgusA fusion also was subject to positive regulation by rpfF, which is responsible for the synthesis of the diffusible signal factor (DSF). The expression of the gumgusA fusion in bacteria recovered from inoculated turnip leaves was maximal at the later phases of growth and was subject to regulation by rpfF. These results provide indirect support for the operation of the DSF regulatory system in bacteria in planta.


The Plant Cell | 2007

Bacterial Cyclic β-(1,2)-Glucan Acts in Systemic Suppression of Plant Immune Responses

Luciano A. Rigano; Caroline Payette; Geneviève Brouillard; María Rosa Marano; Laura Abramowicz; Pablo Torres; Maximina Yun; Atilio Pedro Castagnaro; Mohamed El Oirdi; Vanessa Dufour; Florencia Malamud; John Maxwell Dow; Kamal Bouarab; Adrián A. Vojnov

Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium–plant interactions, their precise roles are unclear. Here, we examined the role of cyclic β-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic β-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic β-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic β-(1,2)-glucan–induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant–pathogen coevolution and for the development of phytoprotection measures.


Microbiology | 1998

Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris

Adrián A. Vojnov; Zorreguieta A; Dow Jm; Michael J. Daniels; Marcelo A. Dankert

The biosynthesis of the extracellular polysaccharide xanthan in Xanthomonas campestris pv. campestris is directed by a cluster of 12 genes, gumB-gumM. Several xanthan-deficient mutants of the wild-type strain 8004 have previously been described which carry Tn5 insertions in this region of the chromosome. Here it is shown that the transposon insertion in one of these mutants, strain 8397, is located 15 bp upstream of the translational start site of the gumB gene. EDTA-treated cells of strain 8397 were able to synthesize the lipid-linked pentasaccharide repeating unit of xanthan from the three nucleotide sugar donors (UDP-glucose, GDP-mannose and UDP-glucuronic acid) but were unable to polymerize the pentasaccharide into mature xanthan. A subclone of the gum gene cluster carrying gumB and gumC restored xanthan production to strain 8397 to levels approximately 28% of the wild-type. In contrast, subclones carrying gumB or gumC alone were not effective. These results are discussed with reference to previous speculations, based on computer analysis, that gumB and gumC are both involved in the translocation of xanthan across the bacterial membranes.


Environmental Microbiology | 2007

Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris.

Pablo Torres; Florencia Malamud; Luciano A. Rigano; Daniela M. Russo; María Rosa Marano; Atilio Pedro Castagnaro; Angeles Zorreguieta; Kamal Bouarab; John Maxwell Dow; Adrián A. Vojnov

Virulence of the black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is regulated by cell–cell signalling involving the diffusible signal factor DSF. Synthesis and perception of DSF require products of genes within the rpf cluster (for regulation of pathogenicity factors). RpfF directs DSF synthesis whereas RpfC and RpfG are involved in DSF perception. Here we have examined the role of the rpf/DSF system in biofilm formation in minimal medium using confocal laser-scanning microscopy of GFP-labelled bacteria. Wild-type Xcc formed microcolonies that developed into a structured biofilm. In contrast, an rpfF mutant (DSF-minus) and an rpfC mutant (DSF overproducer) formed only unstructured arrangements of bacteria. A gumB mutant, defective in xanthan biosynthesis, was also unable to develop the typical wild-type biofilm. Mixed cultures of gumB and rpfF mutants formed a typical biofilm in vitro. In contrast, in mixed cultures the rpfC mutant prevented the formation of the structured biofilm by the wild-type and did not restore wild-type biofilm phenotypes to gumB or rpfF mutants. These effects on structured biofilm formation were correlated with growth and disease development by Xcc strains in Nicotiana benthamiana leaves. These findings suggest that DSF signalling is finely balanced during both biofilm formation and virulence.


Fitoterapia | 2011

Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L.

Eleonora S. Mengoni; Gabriel Vichera; Luciano A. Rigano; Marcelo L. Rodriguez-Puebla; Silvia R. Galliano; Eduardo E. Cafferata; Omar H. Pivetta; Sivia Moreno; Adrián A. Vojnov

In the present study, we evaluated the effects of extracts and purified compounds from fresh leaves of Rosmarinus officinalis L. Pretreatment with the major anti-inflammatory compounds, carnosic acid (CA) and carnosol (CS), inhibited phorbol 12-myristate 13-acetate (PMA)-induced ear inflammation in mice with an EC(50) of 10.20 μg/cm(2) and 10.70 μg/cm(2), respectively. To further understand the anti-inflammatory mechanism of these compounds, we analyzed the in vivo expression of several inflammation-associated genes in mouse skin by reverse transcriptase-polymerase chain reaction (RT-PCR). Our data showed that CA and CS reduced the expression of IL-1β and TNF-α but had less effect on fibronectin and ICAM-1 expression. Interestingly, both compounds selectively inhibited COX-2 but not COX-1. Histopathological analysis of hematoxylin and eosin (H&E)-stained tissue revealed a marked reduction in leukocyte infiltration and epidermal ulceration of PMA-treated ears when ears were pretreated with ethanolic extracts or pure CA. In vitro, we showed that ethanolic extract, carnosic acid and carnosol significantly inhibited the overproduction of nitric oxide (NO) in a dose-dependent manner in the RAW 264.7 murine macrophage cell line. For the first time in vivo, we showed that CA and CS differentially regulate the expression of inflammation-associated genes, thus demonstrating the pharmacological basis for the anti-inflammatory properties reported for CA and CS.


Microbiology | 2011

The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development.

Florencia Malamud; Pablo Torres; Roxana Andrea Roeschlin; Luciano A. Rigano; Ramón Enrique; Hernán R. Bonomi; Atilio Pedro Castagnaro; María Rosa Marano; Adrián A. Vojnov

Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell-cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent.

Collaboration


Dive into the Adrián A. Vojnov's collaboration.

Top Co-Authors

Avatar

Atilio Pedro Castagnaro

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

María Rosa Marano

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Luciano A. Rigano

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Pablo Torres

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Florencia Malamud

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Roxana Andrea Roeschlin

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

María Rosa Marano

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Lorena Noelia Sendín

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

María Paula Filippone

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Kamal Bouarab

Université de Sherbrooke

View shared research outputs
Researchain Logo
Decentralizing Knowledge