Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Funke is active.

Publication


Featured researches published by Adrian Funke.


International Journal of Pharmaceutics | 2012

A comparison of quality control methods for active coating processes

Daniela Brock; J.A. Zeitler; Adrian Funke; Klaus Knop; Peter Kleinebudde

Terahertz pulsed imaging (TPI) is a recent and nondestructive technique to quantify coating thickness of pharmaceutical tablet film coatings. In this study, TPI is used for the first time to quantify the progress of an active coating process. The dosage form consisted of a push-pull osmotic system comprising a two-layer tablet core with a functional film coating and a laser drilled hole. On top of this system an active coating was applied. The coating thickness data acquired by TPI and optical microscopy was compared to the quantification of the active pharmaceutical ingredient (API) via HPLC. Good correlation of TPI and HPLC data was shown for coating thicknesses up to 500 μm. Due to the special structure of the dosage form, the TPI detection limit of 38 μm layer thickness was circumvented by analysing the coating thickness of active coating and functional subcoat in one. Therefore it was possible to monitor the active coating process from the very beginning of the process. Optical microscopy was no suitable reference technique for TPI thickness measurements. The active coating showed deformation artefacts during sample preparation, which biased the subsequent thickness measurements.


International Journal of Pharmaceutics | 2013

Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale

Sarah Just; Gregor Toschkoff; Adrian Funke; Dejan Djuric; Georg Scharrer; Johannes G. Khinast; Klaus Knop; Peter Kleinebudde

The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Evaluation of critical process parameters for inter-tablet coating uniformity of active-coated GITS using Terahertz Pulsed Imaging.

Daniela Brock; J. Axel Zeitler; Adrian Funke; Klaus Knop; Peter Kleinebudde

The aim of this study was the evaluation of critical process parameters (CPP) for inter-tablet coating uniformity in an active pan coating process using nondestructive Terahertz Pulsed Imaging (TPI). Coating uniformity was assessed by calculating the coefficient of variation (CV) of coating thickness measured by TPI, and the CV of API content measured by high performance liquid chromatography (HPLC). A design of experiments (DoE) was performed at pilot scale with drum load, drum speed, spray rate, run duration and spray pressure as factors. Good agreement in the CV of both analytical techniques was shown. The DoE models both revealed the same CPP: a low drum load, high drum speed, low spray rate and high run duration were beneficial for coating uniformity. The spray pressure was only significant in one of the DoE models. It was further shown that the negative impact of a high drum load on the CV cannot only be compensated by high drum speed, but also be compensated by a low spray rate and long run duration. It was demonstrated that TPI is a feasible tool for the measurement of inter-tablet coating uniformity and for the evaluation of CPP in an active pan coating process.


Journal of Pharmaceutical and Biomedical Analysis | 2013

Development and in-line validation of a Process Analytical Technology to facilitate the scale up of coating processes.

Markus Wirges; Adrian Funke; Peter Serno; Klaus Knop; Peter Kleinebudde

Incorporation of an active pharmaceutical ingredient (API) into the coating layer of film-coated tablets is a method mainly used to formulate fixed-dose combinations. Uniform and precise spray-coating of an API represents a substantial challenge, which could be overcome by applying Raman spectroscopy as process analytical tool. In pharmaceutical industry, Raman spectroscopy is still mainly used as a bench top laboratory analytical method and usually not implemented in the production process. Concerning the application in the production process, a lot of scientific approaches stop at the level of feasibility studies and do not manage the step to production scale and process applications. The present work puts the scale up of an active coating process into focus, which is a step of highest importance during the pharmaceutical development. Active coating experiments were performed at lab and production scale. Using partial least squares (PLS), a multivariate model was constructed by correlating in-line measured Raman spectral data with the coated amount of API. By transferring this model, being implemented for a lab scale process, to a production scale process, the robustness of this analytical method and thus its applicability as a Process Analytical Technology (PAT) tool for the correct endpoint determination in pharmaceutical manufacturing could be shown. Finally, this method was validated according to the European Medicine Agency (EMA) guideline with respect to the special requirements of the applied in-line model development strategy.


European Journal of Pharmaceutics and Biopharmaceutics | 2013

Evaluation of critical process parameters for intra-tablet coating uniformity using terahertz pulsed imaging

Daniela Brock; J. Axel Zeitler; Adrian Funke; Klaus Knop; Peter Kleinebudde

The purpose of this study was to evaluate the intra-tablet coating uniformity and the identification of critical process parameters in an active pan coating process using terahertz pulsed imaging (TPI). A design of experiments (DoE) was performed with drum load, drum speed, spray rate, run duration and spray pressure as factors. Different measures of intra-tablet uniformity were investigated: the average thickness on the individual tablet faces, spatial variation in layer thickness over the tablet surface, and the coefficient of variation (CV(intra)). Data analysis revealed that the process parameters in the investigated parameter space had hardly any influence on the difference in layer thickness of the tablet faces and centre band. No increase or decrease in layer thickness--as described in the literature--was found towards the edges of the tablet face. In overwetted process conditions a higher layer thickness at the centre band edges could be observed. Still, the highest variability in coating thickness was found along the circumference of the centre band rather than the height. In general, higher CV(intra) of layer thickness were found on the centre bands in comparison with the tablet faces. The analysis of the DoE model revealed that the run duration had the highest influence on the CV(intra) on the tablet faces. TPI showed high potential in the assessment of intra-tablet uniformity and layer thickness distributions over the whole tablet surface. It was successfully used to identify critical process parameters regarding intra-tablet coating uniformity.


Journal of Pharmaceutical Sciences | 2017

A Review of PAT Strategies in Secondary Solid Oral Dosage Manufacturing of Small Molecules

Stephan Laske; Amrit Paudel; Otto Scheibelhofer; Stephan Sacher; Theresa Hoermann; Johannes G. Khinast; Adrian L. Kelly; Jukka Rantannen; Ossi Korhonen; Fanny Stauffer; Fien De Leersnyder; Thomas De Beer; Jérôme Mantanus; Pierre-François Chavez; Benjamin Thoorens; Patrizia Ghiotti; Martin Schubert; Pirjo Tajarobi; Gunnar Haeffler; Satu Lakio; Magnus Fransson; Anders Sparén; Susanna Abrahmsén-Alami; Staffan Folestad; Adrian Funke; Ivo Backx; Barbara Kavsek; Francois Kjell; Marc Michaelis; Trevor Page

Pharmaceutical solid oral dosage product manufacturing is a well-established, yet revolutionizing area. To this end, process analytical technology (PAT) involves interdisciplinary and multivariate (chemical, physical, microbiological, and mathematical) methods for material (e.g., materials, intermediates, products) and process (e.g., temperature, pressure, throughput, etc.) analysis. This supports rational process modeling and enhanced control strategies for improved product quality and process efficiency. Therefore, it is often difficult to orient and find the relevant, integrated aspects of the current state-of-the-art. Especially, the link between fundamental research, in terms of sensor and control system development, to the application both in laboratory and manufacturing scale, is difficult to comprehend. This review compiles a nonexhaustive overview on current approaches from the recognized academia and industrial practices of PAT, including screening, selection, and final implementations in solid oral dosage manufacturing, through a wide diversity of use cases. Finally, the authors attempt to extract a common consensus toward developing PAT application guidance for different unit operations of drug product manufacturing.


Journal of Pharmaceutical Sciences | 2015

Modeling of an Active Tablet Coating Process

Gregor Toschkoff; Sarah Just; Klaus Knop; Peter Kleinebudde; Adrian Funke; Dejan Djuric; Georg Scharrer; Johannes G. Khinast

Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level.


European Journal of Pharmaceutical Sciences | 2016

Analysis of large-scale tablet coating: Modeling, simulation and experiments

P. Boehling; Gregor Toschkoff; Klaus Knop; Peter Kleinebudde; S. Just; Adrian Funke; H. Rehbaum; Johannes G. Khinast

This work concerns a tablet coating process in an industrial-scale drum coater. We set up a full-scale Design of Simulation Experiment (DoSE) using the Discrete Element Method (DEM) to investigate the influence of various process parameters (the spray rate, the number of nozzles, the rotation rate and the drum load) on the coefficient of inter-tablet coating variation (cv,inter). The coater was filled with up to 290kg of material, which is equivalent to 1,028,369 tablets. To mimic the tablet shape, the glued sphere approach was followed, and each modeled tablet consisted of eight spheres. We simulated the process via the eXtended Particle System (XPS), proving that it is possible to accurately simulate the tablet coating process on the industrial scale. The process time required to reach a uniform tablet coating was extrapolated based on the simulated data and was in good agreement with experimental results. The results are provided at various levels of details, from thorough investigation of the influence that the process parameters have on the cv,inter and the amount of tablets that visit the spray zone during the simulated 90s to the velocity in the spray zone and the spray and bed cycle time. It was found that increasing the number of nozzles and decreasing the spray rate had the highest influence on the cv,inter. Although increasing the drum load and the rotation rate increased the tablet velocity, it did not have a relevant influence on the cv,inter and the process time.


Journal of Pharmaceutical Sciences | 2013

Critical Factors in the Measurement of Tablet Film Coatings Using Terahertz Pulsed Imaging

Daniela Brock; J. Axel Zeitler; Adrian Funke; Klaus Knop; Peter Kleinebudde

The present work gives an insight into some key measurement and signal processing considerations in terahertz pulsed imaging (TPI). TPI is increasingly used for the measurement of the spatial variation of coating thickness on coated solid dosage forms. The potential of TPI for the assessment of coating thickness distributions and the use in process development is described in recent literature. However, some critical factors need to be taken into account when working with this technique. These are (1) the signal processing of the raw data, (2) the influence of the composition of the sample matrix on the TPI signals and subsequent coating analysis, (3) signal distortions that can occur at tablet edges or areas with defects, and (4) the refractive index as a key parameter in the quantification of layer thickness. In this paper, we will highlight to what extent these factors impact on the qualitative and quantitative analysis of TPI data and how artifacts and misinterpretation of data can be avoided to ensure fully quantitative and robust measurements.


Journal of Pharmaceutical Sciences | 2013

Monitoring of an Active Coating Process for Two-Layer Tablets-Model Development Strategies

Markus Wirges; Adrian Funke; Peter Serno; Klaus Knop; Peter Kleinebudde

Incorporation of an active pharmaceutical ingredient (API) into the coating layer of film-coated tablets is a method mainly used to formulate combination tablets. Uniform and precise spray coating of an API represents, however, a substantial challenge that could be overcome by applying Raman spectroscopy as process analytical tool. In the present work, active-coating experiments for osmotic-controlled-release oral delivery system (OROS) tablets were performed in a side-vented lab-scale pan coater. During the process, Raman spectra were recorded in-line and off-line after sampling. Quantitative multivariate calibration models were built up by correlating these spectra with the coated API amount at each sampling point. Three different modeling approaches were tested on a second batch with regard to their predictive ability and robustness. By applying the in-line model development approach on OROS tablets, it was possible to overcome the difficulties of this dosage form with each layer contributing differently to the resulting spectroscopic signal and to determine accurately the applied API amount on two-layer tablets. Thereby, the present study demonstrated that Raman spectroscopy can be successfully implemented as a process analytical technology tool to control and monitor an active-coating process of OROS tablets.

Collaboration


Dive into the Adrian Funke's collaboration.

Top Co-Authors

Avatar

Klaus Knop

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sascha General

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Sarah Just

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Ildiko Terebesi

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Johannes G. Khinast

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Brock

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Markus Wirges

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge