Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian G. Cadar is active.

Publication


Featured researches published by Adrian G. Cadar.


Circulation Research | 2015

Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Tromondae K. Feaster; Adrian G. Cadar; Lili Wang; Charles H. Williams; Young Wook Chun; Jonathan E. Hempel; Nathaniel C. Bloodworth; W. David Merryman; Chee Chew Lim; Joseph C. Wu; Björn C. Knollmann; Charles C. Hong

RATIONALE The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. OBJECTIVE To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. METHODS AND RESULTS Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa). CONCLUSIONS The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing.Rationale: The lack of measurable single-cell contractility of human-induced pluripotent stem cell–derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. Objective: To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Methods and Results: Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current ( I Na). Conclusions: The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing. # Novelty and Significance {#article-title-25}


Cardiovascular Research | 2015

Targeted Inhibition of ANKRD1 Disrupts Sarcomeric ERK-GATA4 Signal Transduction and Abrogates Phenylephrine-Induced Cardiomyocyte Hypertrophy

Lin Zhong; Manuel Chiusa; Adrian G. Cadar; Angel Lin; Susan E. Samaras; Jeffrey M. Davidson; Chee Chew Lim

AIMS Accumulating evidence suggest that sarcomere signalling complexes play a pivotal role in cardiomyocyte hypertrophy by communicating stress signals to the nucleus to induce gene expression. Ankyrin repeat domain 1 (ANKRD1) is a transcriptional regulatory protein that also associates with sarcomeric titin; however, the exact role of ANKRD1 in the heart remains to be elucidated. We therefore aimed to examine the role of ANKRD1 in cardiomyocyte hypertrophic signalling. METHODS AND RESULTS In neonatal rat ventricular myocytes, we found that ANKRD1 is part of a sarcomeric signalling complex that includes ERK1/2 and cardiac transcription factor GATA4. Treatment with hypertrophic agonist phenylephrine (PE) resulted in phosphorylation of ERK1/2 and GATA4 followed by nuclear translocation of the ANKRD1/ERK/GATA4 complex. Knockdown of Ankrd1 attenuated PE-induced phosphorylation of ERK1/2 and GATA4, inhibited nuclear translocation of the ANKRD1 complex, and prevented cardiomyocyte growth. Mice lacking Ankrd1 are viable with normal cardiac function. Chronic PE infusion in wild-type mice induced significant cardiac hypertrophy with reactivation of the cardiac fetal gene program which was completely abrogated in Ankrd1 null mice. In contrast, ANKRD1 does not play a role in haemodynamic overload as Ankrd1 null mice subjected to transverse aortic constriction developed cardiac hypertrophy comparable to wild-type mice. CONCLUSION Our study reveals a novel role for ANKRD1 as a selective regulator of PE-induced signalling whereby ANKRD1 recruits and localizes GATA4 and ERK1/2 in a sarcomeric macro-molecular complex to enhance GATA4 phosphorylation with subsequent nuclear translocation of the ANKRD1 complex to induce hypertrophic gene expression.


Journal of Molecular and Cellular Cardiology | 2018

Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes

Lili Wang; Kyungsoo Kim; Shan Parikh; Adrian G. Cadar; Kevin Bersell; Huan He; Jose R. Pinto; Dmytro O. Kryshtal; Björn C. Knollmann

BACKGROUND Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known. OBJECTIVES To study the effects of the TnT-I79N mutation in human cardiomyocytes. METHODS Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology. RESULTS Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs. CONCLUSIONS The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential.


Pediatric Cardiology | 2017

Hypoplastic Left Heart Syndrome Sequencing Reveals a Novel NOTCH1 Mutation in a Family with Single Ventricle Defects

Matthew D. Durbin; Adrian G. Cadar; Charles H. Williams; Yan Guo; David P. Bichell; Yan Ru Su; Charles C. Hong

Hypoplastic left heart syndrome (HLHS) has been associated with germline mutations in 12 candidate genes and a recurrent somatic mutation in HAND1 gene. Using targeted and whole exome sequencing (WES) of heart tissue samples from HLHS patients, we sought to estimate the prevalence of somatic and germline mutations associated with HLHS. We performed Sanger sequencing of the HAND1 gene on 14 ventricular (9 LV and 5 RV) samples obtained from HLHS patients, and WES of 4 LV, 2 aortic, and 4 matched PBMC samples, analyzing for sequence discrepancy. We also screened for mutations in the 12 candidate genes implicated in HLHS. We found no somatic mutations in our HLHS cohort. However, we detected a novel germline frameshift/stop-gain mutation in NOTCH1 in a HLHS patient with a family history of both HLHS and hypoplastic right heart syndrome (HRHS). Our study, involving one of the first familial cases of single ventricle defects linked to a specific mutation, strengthens the association of NOTCH1 mutations with HLHS and suggests that the two morphologically distinct single ventricle conditions, HLHS and HRHS, may share a common molecular and cellular etiology. Finally, somatic mutations in the LV are an unlikely contributor to HLHS.


Bioorganic & Medicinal Chemistry Letters | 2016

Development of thieno- and benzopyrimidinone inhibitors of the Hedgehog signaling pathway reveals PDE4-dependent and PDE4-independent mechanisms of action

Jonathan E. Hempel; Adrian G. Cadar; Charles C. Hong

From a high content in vivo screen for modulators of developmental patterning in embryonic zebrafish, we previously identified eggmanone (EGM1, 3) as a Hedgehog (Hh) signaling inhibitor functioning downstream of Smoothened. Phenotypic optimization studies for in vitro probe development utilizing a Gli transcription-linked stable luciferase reporter cell line identified EGM1 analogs with improved potency and aqueous solubility. Mechanistic profiling of optimized analogs indicated two distinct scaffold clusters: PDE4 inhibitors able to inhibit downstream of Sufu, and PDE4-independent Hh inhibitors functioning between Smo and Sufu. Each class represents valuable in vitro probes for elucidating the complex mechanisms of Hh regulation.


Pediatric Research | 2018

Investigating pediatric disorders with induced pluripotent stem cells

Matthew D. Durbin; Adrian G. Cadar; Young Wook Chun; Charles C. Hong

The study of disease pathophysiology has long relied on model systems, including animal models and cultured cells. In 2006, Shinya Yamanaka achieved a breakthrough by reprogramming somatic cells into induced pluripotent stem cells (iPSCs). This revolutionary discovery provided new opportunities for disease modeling and therapeutic intervention. With established protocols, investigators can generate iPSC lines from patient blood, urine, and tissue samples. These iPSCs retain ability to differentiate into every human cell type. Advances in differentiation and organogenesis move cellular in vitro modeling to a multicellular model capable of recapitulating physiology and disease. Here, we discuss limitations of traditional animal and tissue culture models, as well as the application of iPSC models. We highlight various techniques, including reprogramming strategies, directed differentiation, tissue engineering, organoid developments, and genome editing. We extensively summarize current established iPSC disease models that utilize these techniques. Confluence of these technologies will advance our understanding of pediatric diseases and help usher in new personalized therapies for patients.


Journal of the American College of Cardiology | 2017

Myofilament Calcium-Buffering Dependent Action Potential Triangulation in Human-Induced Pluripotent Stem Cell Model of Hypertrophic Cardiomyopathy

Lili Wang; Dmytro O. Kryshtal; Kyungsoo Kim; Shan Parikh; Adrian G. Cadar; Kevin Bersell; Huan He; Jose R. Pinto; Björn C. Knollmann

Familial hypertrophic cardiomyopathy is caused by mutations in genes encoding sarcomere proteins. Among hypertrophic cardiomyopathy–linked disease genes, cardiac troponin T (TnT) mutations are associated with a high incidence of arrhythmic cardiac death [(1)][1], but the underlying mechanism has


Current protocols in stem cell biology | 2017

Production of Single Contracting Human Induced Pluripotent Stem Cell‐Derived Cardiomyocytes: Matrigel Mattress Technique

Adrian G. Cadar; Tromondae K. Feaster; Matthew D. Durbin; Charles C. Hong

This unit describes the published Matrigel mattress method. Briefly, we describe the preparation of the mattress, replating of the human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) on the Matrigel mattress, and hiPSC-CM mattress maintenance. Adherence to this protocol will yield individual, robustly shortening hiPSC-CMs, which can be used for downstream applications.


Circulation Research | 2015

Matrigel MattressNovelty and Significance: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes

Tromondae K. Feaster; Adrian G. Cadar; Lili Wang; Charles H. Williams; Young Wook Chun; Jonathan E. Hempel; Nathaniel C. Bloodworth; W. David Merryman; Chee Chew Lim; Joseph C. Wu; Björn C. Knollmann; Charles C. Hong

RATIONALE The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. OBJECTIVE To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. METHODS AND RESULTS Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa). CONCLUSIONS The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing.Rationale: The lack of measurable single-cell contractility of human-induced pluripotent stem cell–derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. Objective: To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Methods and Results: Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current ( I Na). Conclusions: The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing. # Novelty and Significance {#article-title-25}


Circulation Research | 2015

Matrigel MattressNovelty and Significance

Tromondae K. Feaster; Adrian G. Cadar; Lili Wang; Charles H. Williams; Young Wook Chun; Jonathan E. Hempel; Nathaniel C. Bloodworth; W. David Merryman; Chee Chew Lim; Joseph C. Wu; Björn C. Knollmann; Charles C. Hong

RATIONALE The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. OBJECTIVE To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. METHODS AND RESULTS Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa). CONCLUSIONS The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing.Rationale: The lack of measurable single-cell contractility of human-induced pluripotent stem cell–derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. Objective: To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Methods and Results: Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current ( I Na). Conclusions: The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing. # Novelty and Significance {#article-title-25}

Collaboration


Dive into the Adrian G. Cadar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lili Wang

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Zhong

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Angel Lin

Vanderbilt University

View shared research outputs
Researchain Logo
Decentralizing Knowledge