Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian G. Sacher is active.

Publication


Featured researches published by Adrian G. Sacher.


JAMA Oncology | 2016

Prospective Validation of Rapid Plasma Genotyping for the Detection of EGFR and KRAS Mutations in Advanced Lung Cancer

Adrian G. Sacher; Cloud P. Paweletz; Suzanne E. Dahlberg; Ryan S. Alden; Allison O’Connell; Nora Feeney; Stacy L. Mach; Pasi A. Jänne; Geoffrey R. Oxnard

IMPORTANCE Plasma genotyping of cell-free DNA has the potential to allow for rapid noninvasive genotyping while avoiding the inherent shortcomings of tissue genotyping and repeat biopsies. OBJECTIVE To prospectively validate plasma droplet digital PCR (ddPCR) for the rapid detection of common epidermal growth factor receptor (EGFR) and KRAS mutations, as well as the EGFR T790M acquired resistance mutation. DESIGN, SETTING, AND PARTICIPANTS Patients with advanced nonsquamous non-small-cell lung cancer (NSCLC) who either (1) had a new diagnosis and were planned for initial therapy or (2) had developed acquired resistance to an EGFR kinase inhibitor and were planned for rebiopsy underwent initial blood sampling and immediate plasma ddPCR for EGFR exon 19 del, L858R, T790M, and/or KRAS G12X between July 3, 2014, and June 30, 2015, at a National Cancer Institute-designated comprehensive cancer center. All patients underwent biopsy for tissue genotyping, which was used as the reference standard for comparison; rebiopsy was required for patients with acquired resistance to EGFR kinase inhibitors. Test turnaround time (TAT) was measured in business days from blood sampling until test reporting. MAIN OUTCOMES AND MEASURES Plasma ddPCR assay sensitivity, specificity, and TAT. RESULTS Of 180 patients with advanced NSCLC (62% female; median [range] age, 62 [37-93] years), 120 cases were newly diagnosed; 60 had acquired resistance. Tumor genotype included 80 EGFR exon 19/L858R mutants, 35 EGFR T790M, and 25 KRAS G12X mutants. Median (range) TAT for plasma ddPCR was 3 (1-7) days. Tissue genotyping median (range) TAT was 12 (1-54) days for patients with newly diagnosed NSCLC and 27 (1-146) days for patients with acquired resistance. Plasma ddPCR exhibited a positive predictive value of 100% (95% CI, 91%-100%) for EGFR 19 del, 100% (95% CI, 85%-100%) for L858R, and 100% (95% CI, 79%-100%) for KRAS, but lower for T790M at 79% (95% CI, 62%-91%). The sensitivity of plasma ddPCR was 82% (95% CI, 69%-91%) for EGFR 19 del, 74% (95% CI, 55%-88%) for L858R, and 77% (95% CI, 60%-90%) for T790M, but lower for KRAS at 64% (95% CI, 43%-82%). Sensitivity for EGFR or KRAS was higher in patients with multiple metastatic sites and those with hepatic or bone metastases, specifically. CONCLUSIONS AND RELEVANCE Plasma ddPCR detected EGFR and KRAS mutations rapidly with the high specificity needed to select therapy and avoid repeat biopsies. This assay may also detect EGFR T790M missed by tissue genotyping due to tumor heterogeneity in resistant disease.


Clinical Cancer Research | 2016

Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients

Cloud P. Paweletz; Adrian G. Sacher; Chris K. Raymond; Ryan S. Alden; Allison O'Connell; Stacy L. Mach; Yanan Kuang; Leena Gandhi; Paul Kirschmeier; Jessie M. English; Lee P. Lim; Pasi A. Jänne; Geoffrey R. Oxnard

Purpose: Tumor genotyping is a powerful tool for guiding non–small cell lung cancer (NSCLC) care; however, comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). Experimental Design: An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. Results: NGS could identify mutations present in DNA dilutions at ≥0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Conclusions: Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. Clin Cancer Res; 22(4); 915–22. ©2015 AACR. See related commentary by Tsui and Berger, p. 790


JAMA Oncology | 2016

Biomarkers for the Clinical Use of PD-1/PD-L1 Inhibitors in Non–Small-Cell Lung Cancer: A Review

Adrian G. Sacher; Leena Gandhi

IMPORTANCE The development of programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) checkpoint inhibitors has changed the landscape of non-small-cell lung cancer (NSCLC) therapy, with 2 approvals from the US Food and Drug Administration of PD-1 inhibitors for second-line therapy. However, the rational use of these agents has been limited by the lack of a definitive predictive biomarker. OBSERVATIONS Tumor PD-L1 expression is associated with an increased likelihood of NSCLC response to these agents, although responses can still occur at a low rate in PD-L1-negative tumors. The use of PD-L1 as a predictive biomarker for use of PD-1/PD-L1 inhibitors is limited by the multitude of PD-L1 antibodies, assays, scoring systems, and thresholds for positivity currently used. Alternative biomarkers such as tumor neoantigens identified through whole-exome sequencing and clinical parameters (eg, smoking or oncogene driver status) may also have predictive value. Biomarkers that can direct the rational use of PD-1/PD-L1 checkpoint inhibitors are crucial given the risk of life-threatening immune-related complications associated with these therapies and the reality that most patients still do not benefit from their use. CONCLUSIONS AND RELEVANCE The refinement of existing biomarkers and identification of novel predictive biomarkers will be key to ensuring the effective and safe use of these agents. Since most patients still do not benefit from these agents, it is critical to continue to work to define the select patient population who will derive durable benefit from PD-1/PD-L1 inhibition and identify markers that could have predictive value for combination therapies that could expand the population who benefit.


JAMA Oncology | 2016

Association Between Younger Age and Targetable Genomic Alterations and Prognosis in Non–Small-Cell Lung Cancer

Adrian G. Sacher; Suzanne E. Dahlberg; Jennifer C. Heng; Stacy L. Mach; Pasi A. Jänne; Geoffrey R. Oxnard

IMPORTANCE Non-small-cell lung cancer (NSCLC) diagnosed in young patients is rare, and the genomics and clinical characteristics of this disease are poorly understood. In contrast, the diagnosis of other cancers at a young age has been demonstrated to define unique disease biology. Herein, we report on the association of young age with targetable genomic alterations and prognosis in a cohort of 2237 patients with NSCLC. OBJECTIVE To determine the relationship between young age at diagnosis and the presence of a potentially targetable genomic alteration, disease prognosis, and natural history. DESIGN, SETTING, AND PARTICIPANTS A cohort of all 2237 patients with NSCLC who were genotyped at the Dana-Farber Cancer Institute between January 2002 and December 2014 were identified. Tumor genotype, patient characteristics, and clinical outcomes were collected and studied at a National Cancer Institute-designated comprehensive cancer center. Multivariate logistic regression was used to analyze the relationship between age and mutation status, and multivariate Cox proportional hazard models were fitted for survival analysis. MAIN OUTCOMES AND MEASURES The frequency of targetable genomic alterations by defined age categories as well as the association of these age groups with survival. Age categories used in this analysis were younger than 40, 40 to 49, 50 to 59, 60 to 69, and 70 years or older. RESULTS A cohort of 2237 patients with NSCLC was studied. Of the 2237 participants, 1939 (87%) had histologically confirmed adenocarcinoma, 269 (12%) had NSCLC not otherwise specified, and 29 (1%) had squamous histologic findings; 1396 (63%) had either stage IIIB or IV cancers; and median (range) age was 62 (20-95) years. We found that gene mutations for EGFR (P = .02) and ALK (P < .001) were associated with cancer diagnosis at a younger age, and a similar trend existed for ERBB2 (P = .15) and ROS1 (P = .10) but not BRAF V600E (P = .43). Among patients tested for all 5 targetable genomic alterations (n = 1325), younger age was associated with an increased frequency of a targetable genotype (P < .001). Those diagnosed at 50 years or younger have a 59% increased likelihood of harboring a targetable genotype. While presence of a potentially targetable genomic alteration treated with a targeted agent was associated with improved survival, the youngest and oldest age groups had similarly poor outcomes even when a targetable genotype was present. CONCLUSIONS AND RELEVANCE Younger age is associated with an increased likelihood of harboring a targetable genotype and is an underappreciated clinical biomarker in NSCLC. The survival of young patients with NCSLC is unexpectedly poor compared with other age groups, suggesting more aggressive disease biology. These findings underscore the importance of comprehensive genotyping, including next-generation sequencing, in younger patients with lung cancer.


Cancer | 2015

Real‐world chemotherapy treatment patterns in metastatic non–small cell lung cancer: Are patients undertreated?

Adrian G. Sacher; Lisa W. Le; Anthea Lau; Craig C. Earle; N. Leighl

New therapies for metastatic non–small cell lung cancer (NSCLC) have improved survival in clinical trials. However, only a minority of patients receive systemic therapy. This article reports treatment patterns and outcomes for a population of Canadian patients with metastatic NSCLC (Ontario).


Cancer Discovery | 2016

Acquired METD1228V Mutation and Resistance to MET Inhibition in Lung Cancer

Magda Bahcall; Taebo Sim; Cloud P. Paweletz; Jyoti D. Patel; Ryan S. Alden; Yanan Kuang; Adrian G. Sacher; Nam Doo Kim; Christine A. Lydon; Mark M. Awad; Michael T. Jaklitsch; Lynette M. Sholl; Pasi A. Jänne; Geoffrey R. Oxnard

Amplified and/or mutated MET can act as both a primary oncogenic driver and as a promoter of tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC). However, the landscape of MET-specific targeting agents remains underdeveloped, and understanding of mechanisms of resistance to MET TKIs is limited. Here, we present a case of a patient with lung adenocarcinoma harboring both a mutation in EGFR and an amplification of MET, who after progression on erlotinib responded dramatically to combined MET and EGFR inhibition with savolitinib and osimertinib. When resistance developed to this combination, a new MET kinase domain mutation, D1228V, was detected. Our in vitro findings demonstrate that METD1228V induces resistance to type I MET TKIs through impaired drug binding, while sensitivity to type II MET TKIs is maintained. Based on these findings, the patient was treated with erlotinib combined with cabozantinib, a type II MET inhibitor, and exhibited a response. SIGNIFICANCE With several structurally distinct MET inhibitors undergoing development for treatment of NSCLC, it is critical to identify mechanism-based therapies for drug resistance. We demonstrate that an acquired METD1228V mutation mediates resistance to type I, but not type II, MET inhibitors, having therapeutic implications for the clinical use of sequential MET inhibitors. Cancer Discov; 6(12); 1334-41. ©2016 AACR.See related commentary by Trusolino, p. 1306This article is highlighted in the In This Issue feature, p. 1293.


Cancer Cytopathology | 2017

PD-L1 expression in non-small cell lung carcinoma: Comparison among cytology, small biopsy, and surgical resection specimens: PD-L1 Expression in NSCLC Specimens

Jonas J. Heymann; William A. Bulman; David Swinarski; Carlos Pagan; John P. Crapanzano; Mehrvash Haghighi; Ladan Fazlollahi; Mark B. Stoopler; Joshua R. Sonett; Adrian G. Sacher; Catherine A. Shu; Naiyer A. Rizvi; Anjali Saqi

One immunotherapeutic agent for patients with advanced non‐small cell lung carcinoma, pembrolizumab, has a companion immunohistochemistry (IHC)‐based assay that predicts response by quantifying programmed death‐ligand 1 (PD‐L1) expression. The current study assessed the feasibility of quantifying PD‐L1 expression using cytologic non‐small cell lung carcinoma specimens and compared the results with those from small biopsy and surgical resection specimens.


Cancer | 2014

Management of acquired resistance to epidermal growth factor receptor kinase inhibitors in patients with advanced non-small cell lung cancer

Adrian G. Sacher; Pasi A. Jänne; Geoffrey R. Oxnard

The widespread adoption of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the first‐line treatment of patients with advanced EGFR‐mutated non‐small cell lung cancer has resulted in acquired tyrosine kinase inhibitor resistance becoming a ubiquitous clinical problem. The identification of specific mechanisms of acquired resistance has allowed a better understanding of the biology and natural history of resistant disease, but is only now starting to impact treatment decisions. Strategies for managing acquired resistance in patients with advanced non‐small cell lung cancer are complex and must be adapted to the individual characteristics of each patients cancer. Although combination chemotherapy is the presumed standard of care for most patients, prospective trial data are lacking, highlighting the importance of offering patients participation in clinical trials in this setting. Emerging data from trials of third‐generation mutant‐specific EGFR kinase inhibitors suggests particular promise with this class of agents. Cancer 2014;120:2289–2298.


Journal of Thoracic Oncology | 2017

Application of Plasma Genotyping Technologies in Non–Small Cell Lung Cancer: A Practical Review

Adrian G. Sacher; Kimberly M. Komatsubara; Geoffrey R. Oxnard

ABSTRACT The rational treatment of metastatic NSCLC hinges on the timely detection of potentially targetable genomic alterations to guide therapy. Recent advances in highly sensitive genotyping technologies have allowed for development of novel plasma genotyping assays that are capable of noninvasively detecting targetable alterations in plasma cell‐free DNA without reliance on traditional tissue genotyping. The rapid development of plasma genotyping has led to an explosion in the number of assay platforms available from both commercial and laboratory sources. The sheer number of such platforms has led to confusion among oncologists as to both the test characteristics and limitations of individual plasma genotyping assays and the clinical context in which these tests may be utilized either alone or in combination with traditional tissue genotyping. Reliable data from prospective validation against a tissue genotyping reference standard are available for only a limited number of platforms. Careful retrospective validation of alternative platforms utilizing paired tissue and plasma specimens collected under the auspices of clinical trials represent an alternative but reliable validation strategy. A consistent trend among these well‐validated plasma genotyping assays has been the observation of high specificity and positive predictive value and more limited sensitivity. At present, validated assays can be considered actionable in instances in which a targetable genomic alteration is detected or an alternative nontargetable driver mutation is detected and can be used to infer the absence of one of the former.


Seminars in Oncology | 2016

Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers

Claud Grigg; Zoe Blake; Robyn Denise Gartrell; Adrian G. Sacher; Bret Taback; Yvonne M. Saenger

Talimogene laherparepvec (T-Vec) is the first live virus to be approved by the US Food and Drug Administration for the treatment of cancer. This engineered version of herpes simplex virus type 1 (HSV-1) is the product of decades of preclinical work aimed at identifying and modifying aspects of the viral genome involved in virulence and immunogenicity. T-Vec preferentially infects and lyses tumor cells and, in some cases, induces a systemic immune response against the tumor. These properties have translated into significant and durable clinical responses, particularly in advanced melanoma. Many unanswered questions remain, including how to augment these clinical responses and which other tumor types may respond to oncolytic therapy. Here, we review the development of T-Vec, our current understanding of its impact on the tumor immune micro-environment, and its safety and efficacy in clinical trials for melanoma and other cancers.

Collaboration


Dive into the Adrian G. Sacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha B. Leighl

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge