Adrian Gaylard
Jaguar Land Rover
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adrian Gaylard.
SAE 2016 World Congress and Exhibition | 2016
Giancarlo Pavia; Martin A. Passmore; Adrian Gaylard
Short tapered sections on the trailing edge of the roof, underside and sides of a vehicle are a common feature of the aerodynamic optimization process and are known to have a significant effect on the base pressure and thereby the vehicle drag. In this paper the effects of such high aspect ratio chamfers on the time-dependent base pressure are investigated. Short tapered surfaces, with a chord approximately equal to 4% of the overall model length, were applied to the trailing edges of a simplified passenger car model (the Windsor Body) and base pressure studied via an array of surface pressure tappings. Two sets of configurations were tested. In the first case, a chamfer was applied only to the top or bottom trailing edge. A combination of taper angles was also considered. In the second case, the chamfer was applied to the side edges of the model base, leaving the horizontal trailing edges squared. In all configurations both the base and the slanted surfaces were covered with pressure taps for the entire width to ensure that any asymmetry was captured and two different sampling time were considered (respectively equal to 31.5 s and 630.0 s). The results show the effects produced on the base pressure by the presence of a long period bi-stable behavior, whose characteristics were further investigated by conditional averaging the recorded data and considering the distribution of the rms pressure values recorded over the entire model base.
SAE 2016 World Congress and Exhibition | 2016
Anton Kabanovs; Max Varney; Andrew Garmory; Martin A. Passmore; Adrian Gaylard
This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle. The aim is to investigate the fundamentals of contamination in a case where both flow field and contamination patterns can be measured, and also to provide validation of modelling techniques in a case where flow and spray conditions are known. CFD results were obtained using both steady RANS and unsteady URANS solvers, combined with particle tracking methods. Steady RANS does not capture the wake structures accurately and this affects the contamination prediction. URANS is able to recover the large-scale wake unsteadiness seen in the experimental data, but the difference between the experimental and computational contamination distributions is still notable. The CFD is also able to provide further insight by showing the behaviour of particles of different sizes. Large particles are found to take on a ballistic trajectory and penetrate the wake. In contrast, small particles are shown to be less likely to become entrained into the wake.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems | 2015
Andrew Wood; Martin A. Passmore; David C. Forbes; Daniel Wood; Adrian Gaylard
The pressure on the base of a vehicle is a major contributor to the aerodynamic drag of all practical vehicle geometries, and for some vehicles, such as an SUV, it is particularly important because it can account for up to 50% of the overall drag. Understanding the mechanisms that influence the base pressure and developing our simulation tools to ensure that base pressure is accurately predicted are essential requirements for the vehicle design and engineering process. This paper reports an experimental study to investigate the base pressure on a specifically designed generic SUV model. The results from ¼ scale wind tunnel tests include force and moment data, surface pressures over the base region and particle image velocimetry (PIV) in the wake. Results are presented for the vehicle in different ride height, underfloor roughness and wheel configurations and the paper includes some description of the experimental errors. Some initial CFD simulations are also reported.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems | 2016
David C. Forbes; Gary J. Page; Martin A. Passmore; Adrian Gaylard
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method. Between the quasi-steady and unsteady simulations, an overshoot in aerodynamic yaw moment for the latter resulted in a larger lateral deviation of approximately 8%. However, the differences in responses between the transient, one-way and fully coupled methods were small for this particular geometry. It is expected that by increasing gust length, differences will appear, as the vehicle is exposed to the larger flow yaw angle for a longer period.
WCX™ 17: SAE World Congress Experience | 2017
Nicholas Simmonds; John Pitman; Panagiotis Tsoutsanis; Karl W. Jenkins; Adrian Gaylard; Wilko Jansen
Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW. The notchback DrivAer model with under-hood cooling provides a popular academic benchmark alongside two fully-engineered production cars; a large saloon (Jaguar XJ) and an SUV (Land Rover Range Rover). Initially three levels of spatial discretization were used with three steady-state RANS solvers (k-ɛ realizable, k-ω SST and Spalart-Allmaras) to ascertain whether previous work using RANS on the large saloon studying cooling flows could be replicated on other vehicle shapes. For both the full-production vehicles, all three turbulence models were capable of predicting the cooling drag delta within 5 counts (0.005 Cd). However, the DrivAer model was much more sensitive to both changes in turbulence models and mesh sizes. For the SA turbulence model only the drag coefficient was well predicted, for the other two RANS models no amount of grid refinement allowed the models to correctly predict the flow field. It was seen when comparing the k-ɛ realizable and SA turbulence models the difference in cooling drag was attributed to the rear of the vehicle. This highlighted that despite similar drag values from the cooling package, the cooling deltas were very different, suggesting that cooling drag cannot be thought of as open-closed drag with the addition of drag due to the cooling package. Further work on the DrivAer model expanded on the RANS simulations utilizing the eddy-resolving methods, IDDES and LBM, as validation cases. Oscillations which were seen in the SA and k-ω SST RANS turbulence models were shown to be of similar levels to those in the transient methods indicating a pseudo-unsteadiness present in the steady-state solvers and the importance of resolving it. Drag and lift coefficient absolute values were compared showing that only the IDDES method with sliding wheels and LBM method could obtain physical results for the majority of the tested criteria. Introduction Current and future regulations in the automotive industry place a high importance on the environmental impact of vehicles. It is becoming increasingly important to be able to calculate the drag of each vehicle specification and the affect of each changeable component on the final configuration. Wind tunnels can obtain all this information but it is difficult to create representative prototypes early enough in the development process. With ever increasing computational power available Computational Fluid Dynamics (CFD) provides the ability to simulate and calculate the drag configurations for a variety of models, while state-of-the-art multi-physics simulations with coupling of aerodynamics, thermal management and power-train simulations provide the potential to model real-time simulations. This paper focuses on increasing understanding of so-called cooling air drag, as applied to a fully engineered production large saloon and SUV, this is achieved by discussing the concept of cooling drag vs. complete body aerodynamic simulations and comparing against the popular benchmark DrivAer model.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2017
Adrian Gaylard; Kerry Kirwan; Duncan A. Lockerby
This review surveys the problem of surface contamination of cars, which poses a growing engineering challenge to vehicle manufacturers, operators and users. Both the vision of drivers and the visibility of vehicles need to be maintained under a wide range of environmental conditions. This requires managing the flow of surface water on windscreens and side glazing. The rate of deposition of solid contaminants on glazing, lights, licence plates and external mirrors also needs to be minimised. Maintaining vehicle aesthetics and limiting the transfer of contaminants to the hands and clothes of users from soiled surfaces are also significant issues. Recently, keeping camera lenses clean has emerged as a key concern, as these systems transition from occasional manoeuvring aids to sensors for safety systems. The deposition of water and solid contaminants on to car surfaces is strongly influenced by unsteady vehicle aerodynamic effects. Airborne water droplets falling as rain or lifted as spray by tyres interact with wakes, vortices and shear flows and accumulate on vehicle surfaces as a consequence. The same aerodynamic effects also control the movement of surface water droplets, rivulets and films; hence, particular attention is paid to the management of surface water over the front side glass and the deposition of contaminants on the rear surfaces. The test methods used in the automotive industry are reviewed, as are the numerical simulation techniques.
SAE International Journal of Commercial Vehicles | 2014
Sofie Koitrand; Lennart Löfdahl; Sven Rehnberg; Adrian Gaylard
Automotive aerodynamics measurements and simulations now routinely use a moving ground and rotating wheels (MVG&RW), which is more representative of on-road conditions than the fixed ground-fixed wheel (FG&FW) alternative. This can be understood as a combination of three elements: (a) moving ground (MVG), (b) rotating front wheels (RWF) and (c) rotating rear wheels (RWR). The interaction of these elements with the flow field has been explored to date by mainly experimental means. This paper presents a mainly computational (CFD) investigation of the effect of RWF and RWR, in combination with MVG, on the flow field around a saloon vehicle. The influence of MVG&RW is presented both in terms of a combined change from a FG&FW baseline and the incremental effects seen by the addition of each element separately. For this vehicle, noticeable decrease in both drag and rear lift is shown when adding MVG&RW, whereas front lift shows little change. The same trends are seen in both CFD and experimental data. The addition of MVG alone increases both drag and front lift, whereas rear lift decreases significantly. The addition of RWF alone has little effect on the global results (aside from lift), whereas the addition of RWR alone decreases both drag and rear lift significantly. Combining the incremental changes produces values that align well to the MVG&RW case, with the exception of front lift. This shows similar trends to previously published work, both the noticeable drag decrease due to the addition of MVG&RW, and the contributions of the individual components.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems | 2017
Max Varney; Martin A. Passmore; Adrian Gaylard
Sports Utility Vehicles (SUVs) typically have a blunt rear end shape (for design and practicality), however this is not beneficial for aerodynamic drag. Drag can be reduced by a number of passive and active methods such as tapering and blowing into the base. In an effort to combine these effects and to reduce the drag of a visually square geometry slots have been introduced in the upper side and roof trailing edges of a squareback geometry, to take air from the freestream and passively injects it into the base of the vehicle to effectively create a tapered body. This investigation has been conducted in the Loughborough University’s Large Wind Tunnel with the ¼ scale generic SUV model. The basic aerodynamic effect of a range of body tapers and straight slots have been assessed for 0° yaw. This includes force and pressure measurements for most configurations. The slots generate useful, but small, drag reductions with the best configurations giving reductions in drag coefficient (Cd) of approximately 0.01, whereas the best taper configurations reduce Cd by close to 0.035. The slots also have a tendency to modify the lift.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems | 2017
Anton Kabanovs; Graham Hodgson; Andrew Garmory; Martin A. Passmore; Adrian Gaylard
The motivation for this paper is to consider the effect of rear end geometry on rear soiling using a representative generic SUV body. In particular the effect of varying the top slant angle is considered using both experiment and Computational Fluid Dynamics (CFD). Previous work has shown that slant angle has a significant effect on wake shape and drag and the work here extends this to investigate the effect on rear soiling. It is hoped that this work can provide an insight into the likely effect of such geometry changes on the soiling of similarly shaped road vehicles. To increase the generality of results, and to allow comparison with previously obtained aerodynamic data, a 25% scale generic SUV model is used in the Loughborough University Large Wind Tunnel. UV doped water is sprayed from a position located at the bottom of the left rear tyre to simulate the creation of spray from this tyre. Having a single source of contamination simplifies the configuration of both experimental tests and simulations. It also improves analysis by allowing the soiling pattern from only one wheel to be seen in isolation. In order to provide further insight into the flowfield and its interaction with the spray CFD simulations are also performed at the same scale. A Detached Eddy Simulation approach is used, specifically the Spalart Allmaras formulation of the IDDES CFD model. Lagrangian particle tracking is used to model the dispersed phase. This CFD methodology has been found to give good agreement for soiling pattern with experiment for baseline cases.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2017
David C. Forbes; Gary J. Page; Martin A. Passmore; Adrian Gaylard
This study is an evaluation of the computational methods in reproducing experimental data for a generic sports utility vehicle (SUV) geometry and an assessment on the influence of fixed and rotating wheels for this geometry. Initially, comparisons are made in the wake structure and base pressures between several CFD codes and experimental data. It was shown that steady-state RANS methods are unsuitable for this geometry due to a large scale unsteadiness in the wake caused by separation at the sharp trailing edge and rear wheel wake interactions. unsteady RANS (URANS) offered no improvements in wake prediction despite a significant increase in computational cost. The detached-eddy simulation (DES) and Lattice–Boltzmann methods showed the best agreement with the experimental results in both the wake structure and base pressure, with LBM running in approximately a fifth of the time for DES. The study then continues by analysing the influence of rotating wheels and a moving ground plane over a fixed wheel and ground plane arrangement. The introduction of wheel rotation and a moving ground was shown to increase the base pressure and reduce the drag acting on the vehicle when compared to the fixed case. However, when compared to the experimental standoff case, variations in drag and lift coefficients were minimal but misleading, as significant variations to the surface pressures were present.