Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian J. Cutler is active.

Publication


Featured researches published by Adrian J. Cutler.


Journal of Experimental Botany | 2008

The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors

Daiqing Huang; Weiren Wu; Suzanne R. Abrams; Adrian J. Cutler

Almost 2000 drought-responsive genes were identified in Arabidopsis thaliana under progressive soil drought stress using whole-genome oligonucleotide microarrays. Most of the drought-regulated genes recovered to normal expression levels by 3 h after rewatering. It has previously been shown that the abscisic acid (ABA) analogue (+)-8′-acetylene-ABA (PBI425) hyperinduces many ABA-like changes in gene expression to reveal a more complete list of ABA-regulated genes, and it is demonstrated here that PBI425 produced a correspondingly increased drought tolerance. About two-thirds of drought-responsive genes (1310 out of 1969) were regulated by ABA and/or the ABA analogue PBI425. Analysis of promoter motifs suggests that many of the remaining drought-responsive genes may be affected by ABA signalling. Concentrations of endogenous ABA and its catabolites significantly increased under drought stress and either completely (ABA) or partially (ABA catabolites) recovered to normal levels by 3 h after rehydration. Detailed analyses of drought transcript profiles and in silico comparisons with other studies revealed that the ABA-dependent pathways are predominant in the drought stress responses. These comparisons also showed that other plant hormones including jasmonic acid, auxin, cytokinin, ethylene, brassinosteroids, and gibberellins also affected drought-related gene expression, of which the most significant was jasmonic acid. There is also extensive cross-talk between responses to drought and other environmental factors including light and biotic stresses. These analyses demonstrate that ABA-related stress responses are modulated by other environmental and developmental factors.


Plant Molecular Biology | 1995

PROMOTERS FROM KIN1 AND COR6.6, TWO HOMOLOGOUS ARABIDOPSIS THALIANA GENES : TRANSCRIPTIONAL REGULATION AND GENE EXPRESSION INDUCED BY LOW TEMPERATURE, ABA, OSMOTICUM AND DEHYDRATION

Hong Wang; Raju Datla; Fawzy Georges; Mary K. Loewen; Adrian J. Cutler

The Arabidopsis thaliana genes kin1 and cor6.6 belong to the same family and were expressed at higher levels following low temperature and ABA treatments. In an attempt to elucidate the mechanism of gene regulation by low temperature, the relationship between low-temperature- and abscisic acid (ABA)-induced gene expression and possible differential expression of the two genes, we have cloned a 5.3 kb genomic fragment harboring kin1 and cor6.6 and their respective 5′ sequences. The putative promoters of both genes were fused to the β-glucuronidase (GUS) coding sequence and GUS expression was analysed in transgenic tobacco and Arabidopsis plants. The cor6.6 promoter produced a higher basal level of expression than the kin1 promoter in transgenic tobacco. Enzyme assays of inducible GUS activity in transgenic Arabidopsis and tobacco plants showed that GUS activity directed by both kin1 and cor6.6 promoters was significantly induced by ABA, dehydration and osmoticum, but not by low temperature. Northern analysis revealed, in contrast, that GUS mRNA was significantly induced in these transgenic plants by low temperature. Further analysis showed that, at low temperature, GUS protein synthesis from the induced GUS mRNA was inhibited. Together these results reveal induction of kin1 and cor6.6 transcription by low temperature, exogenous ABA and dehydration. However, low-temperature expression is dramatically reduced at the translational level.


Plant Physiology | 1994

Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites

John Balsevich; Adrian J. Cutler; Nancy Lamb; Laurie J. Friesen; Ebba U. Kurz; Michel Perras; Suzanne R. Abrams

The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies.


Plant Physiology | 2004

A New Abscisic Acid Catabolic Pathway

Rong Zhou; Adrian J. Cutler; Stephen J. Ambrose; Marek M. Galka; Ken M. Nelson; Timothy M. Squires; Mary K. Loewen; Ashok Jadhav; Andrew R. S. Ross; David C. Taylor; Suzanne R. Abrams

We report the discovery of a new hydroxylated abscisic acid (ABA) metabolite, found in the course of a mass spectrometric study of ABA metabolism in Brassica napus siliques. This metabolite reveals a previously unknown catabolic pathway for ABA in which the 9′-methyl group of ABA is oxidized. Analogs of (+)-ABA deuterated at the 8′-carbon atom and at both the 8′- and 9′-carbon atoms were fed to green siliques, and extracts containing the deuterated oxidized metabolites were analyzed to determine the position of ABA hydroxylation. The results indicated that hydroxylation of ABA had occurred at the 9′-methyl group, as well as at the 7′- and 8′-methyl groups. The chromatographic characteristics and mass spectral fragmentation patterns of the new ABA metabolite were compared with those of synthetic 9′-hydroxy ABA (9′-OH ABA), in both open and cyclized forms. The new compound isolated from plant extracts was identified as the cyclized form of 9′-OH ABA, which we have named neophaseic acid (neoPA). The proton nuclear magnetic resonance spectrum of pure neoPA isolated from immature seeds of B. napus was identical to that of the authentic synthetic compound. ABA and neoPA levels were high in young seeds and lower in older seeds. The open form (2Z,4E)-5-[(1R,6S)-1-Hydroxy-6-hydroxymethyl-2,6-dimethyl-4-oxo-cyclohex-2-enyl]-3-methyl-penta-2,4-dienoic acid, but not neoPA, exhibited ABA-like bioactivity in inhibiting Arabidopsis seed germination and in inducing gene expression in B. napus microspore-derived embryos. NeoPA was also detected in fruits of orange (Citrus sinensis) and tomato (Lycopersicon esculentum), in Arabidopsis, and in chickpea (Cicer arietinum), as well as in drought-stressed barley (Hordeum vulgare) and B. napus seedlings.


The Plant Cell | 2011

The Arabidopsis C2H2 Zinc Finger INDETERMINATE DOMAIN1/ENHYDROUS Promotes the Transition to Germination by Regulating Light and Hormonal Signaling during Seed Maturation

J. Allan Feurtado; Daiqing Huang; Leigh E. Wicki-Stordeur; Laura E. Hemstock; Mireille S. Potentier; Edward W. T. Tsang; Adrian J. Cutler

This study investigates the function of ENHYDROUS (ENY), an Arabidopsis C2H2 zinc finger protein, during seed development. ENY promotes germination by counteracting aspects of seed maturation associated with abscisic acid. ENY may accomplish this partially through an interaction with the growth-restraining DELLA proteins and regulation of the gibberellin pathway. Seed development ends with a maturation phase that imparts desiccation tolerance, nutrient reserves, and dormancy degree. Here, we report the functional analysis of an Arabidopsis thaliana C2H2 zinc finger protein INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY). Ectopic expression of IDD1/ENY (2x35S:ENY) disrupted seed development, delaying endosperm depletion and testa senescence, resulting in an abbreviated maturation program. Consequently, mature 2x35S:ENY seeds had increased endosperm-specific fatty acids, starch retention, and defective mucilage extrusion. Using RAB18 promoter ENY lines (RAB18:ENY) to confine expression to maturation, when native ENY expression increased and peaked, resulted in mature seed with lower abscisic acid (ABA) content and decreased germination sensitivity to applied ABA. Furthermore, results of far-red and red light treatments of 2x35S:ENY and RAB18:ENY germinating seeds, and of artificial microRNA knockdown lines, suggest that ENY acts to promote germination. After using RAB18:ENY seedlings to induce ENY during ABA application, key genes in gibberellin (GA) metabolism and signaling were differentially regulated in a manner suggesting negative feedback regulation. Furthermore, GA treatment resulted in a skotomorphogenic-like phenotype in light-grown 2x35S:ENY and RAB18:ENY seedlings. The physical interaction of ENY with DELLAs and an ENY-triggered accumulation of DELLA transcripts during maturation support the conclusion that ENY mediates GA effects to balance ABA-promoted maturation during late seed development.


BMC Plant Biology | 2013

Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence

Masrur R Jaradat; J. Allan Feurtado; Daiqing Huang; Yongquan Lu; Adrian J. Cutler

BackgroundThe transcription factor AtMYBR1 (MYB44) is a member of the MYB family of transcription factors and is expressed throughout the plant life cycle and especially in senescing and wounded leaves. It has previously been shown to be involved in responses to abiotic stress and is regulated by phosphorylation.ResultsWhen MYBR1 was over-expressed under the control of the constitutive 35S promoter in Arabidopsis thaliana (OxMYBR1), leaf senescence was delayed. In contrast loss-of-function mybr1 plants showed more rapid chlorophyll loss and senescence. The MYBR1 promoter strongly drove β-GLUCURONIDASE reporter gene expression in tissues immediately after wounding and many wounding/pathogenesis genes were downregulated in OxMYBR1. OxMYBR1 plants were more susceptible to injury under water stress than wildtype, which was correlated with suppression of many ABA inducible stress genes in OxMYBR1. Conversely, mybr1 plants were more tolerant of water stress and exhibited reduced rates of water loss from leaves. MYBR1 physically interacted with ABA receptor PYR1-LIKE8 (PYL8) suggesting a direct involvement of MYBR1 in early ABA signaling. MYBR1 appears to exhibit partially redundant functions with AtMYBR2 (MYB77) and double mybr1 X mybr2 mutants exhibited stronger senescence and stress related phenotypes than single mybr1 and mybr2 mutants.ConclusionsMYBR1 is a negative regulator of ABA, stress, wounding responses and blocks senescence. It appears to have a homeostatic function to maintain growth processes in the event of physical damage or stress.


Plant Physiology | 2007

A Putative Hydroxysteroid Dehydrogenase Involved in Regulating Plant Growth and Development

Fengling Li; Tadao Asami; Xianzhong Wu; Edward W. T. Tsang; Adrian J. Cutler

We have functionally characterized an Arabidopsis (Arabidopsis thaliana) gene AtHSD1 (At5g50600) that encodes a protein with homology to animal 11-β-hydroxysteroid dehydrogenase (HSD). Transgenic Arabidopsis plants overexpressing AtHSD1 (designated AOHSD plants) under the control of the cauliflower mosaic virus 35S promoter showed increased growth and seed yield as well as increased tolerance of saline stress and reduced seed dormancy. In canola (Brassica napus), transgenic plants overexpressing AtHSD1 also outgrew wild-type plants. AOHSD phenotypes were similar to those of plants that overproduced brassinosteroids (BRs) or overexpressed the BR receptor gene BRI1. A loss-of-function hsd mutant produced by RNA interference displayed a semidwarfed phenotype with reduced sensitivity to BRs. In contrast, AOHSD plants were hypersensitive to BRs and exhibited increased catabolism of abscisic acid (ABA). Germination of AOHSD seeds was less sensitive to ABA, while hsd seed was more sensitive to ABA during germination. AtHSD transcription was rapidly induced by BR treatment in wild type and was expressed widely in aerial plant parts, especially vascular tissues. This study demonstrates that AtHSD1 is involved in regulating growth and development in plants and is likely to promote or mediate BR effects. The gene has significant potential for improving growth and yield of canola and other agricultural crops.


Plant Molecular Biology | 1995

Promoters from kin1 and cor6.6, two Arabidopsis thaliana low-temperature- and ABA-inducible genes, direct strong beta-glucuronidase expression in guard cells, pollen and young developing seeds.

Hong Wang; Adrian J. Cutler

The ability of most higher plants to withstand freezing can be enhanced by cold acclimation, although the freezing tolerance of plant tissues is also affected by their developmental stage. In addition, low temperature has pleiotropic effects on many plant developmental processes such as vernalization. The interaction between plant development and low temperature implies that some genes are regulated by both environmental factors and developmental cues. Although a number of cold-inducible genes from plants have been identified, information concerning their regulation during plant development is limited. In order to understand their developmental regulation and obtain possible clues as to function, the promoters of kin1 and cor6.6, two cold- and abscisic acid (ABA)-regulated genes from Arabidopsis thaliana, were fused to the beta-glucuronidase (GUS)-coding sequence and the resulting constructs were used to transform tobacco and A. thaliana. Transgenic plants with either the kin1 or cor6.6 promoter showed strong GUS expression in pollen, developing seeds, trichomes and, most interestingly, in guard cells. During pollen development, maximum GUS activity was found in mature pollen. In contrast, the maximum GUS activity during seed development was during early embryogenesis. These patterns of expression distinguish kin1 and cor6.6 from related lea genes which are strongly expressed during late embryogenesis. There was no major qualitative difference in patterns of GUS expression between kin1 and cor6.6 promoters and the results were similar for transgenic tobacco and Arabidopsis. Considering the results described, as well as those in an accompanying paper (Wang et al., 1995, Plant Mol Biol 28: 605-617 (this issue), we suggest that osmotic potential might be a major factor in regulating the expression of kin1 and cor6.6 during several developmental processes. The implication of the results for possible function of the gene products is discussed.


PLOS ONE | 2013

Mapping of Quantitative Trait Loci Underlying Cold Tolerance in Rice Seedlings via High-Throughput Sequencing of Pooled Extremes

Zemao Yang; Daiqing Huang; Weiqi Tang; Yan Zheng; Kangjing Liang; Adrian J. Cutler; Weiren Wu

Low temperature is a major limiting factor in rice growth and development. Mapping of quantitative trait loci (QTLs) controlling cold tolerance is important for rice breeding. Recent studies have suggested that bulked segregant analysis (BSA) combined with next-generation sequencing (NGS) can be an efficient and cost-effective way for QTL mapping. In this study, we employed NGS-assisted BSA to map QTLs conferring cold tolerance at the seedling stage in rice. By deep sequencing of a pair of large DNA pools acquired from a very large F3 population (10,800 individuals), we obtained ∼450,000 single nucleotide polymorphisms (SNPs) after strict screening. We employed two statistical methods for QTL analysis based on these SNPs, which yielded consistent results. Six QTLs were mapped on chromosomes 1, 2, 5, 8 and 10. The three most significant QTLs on chromosomes 1, 2 and 8 were validated by comparison with previous studies. Two QTLs on chromosomes 2 and 5 were also identified previously, but at the booting stage rather than the seedling stage, suggesting that some QTLs may function at different developmental stages, which would be useful for cold tolerance breeding in rice. Compared with previously reported QTL mapping studies for cold tolerance in rice based on the traditional approaches, the results of this study demonstrated the advantages of NGS-assisted BSA in both efficiency and statistical power.


BMC Genomics | 2013

MicroRNAs and their putative targets in Brassica napus seed maturation

Daiqing Huang; Chushin Koh; J. Allan Feurtado; Edward W. T. Tsang; Adrian J. Cutler

BackgroundMicroRNAs (miRNAs) are 20–21 nucleotide RNA molecules that suppress the transcription of target genes and may also inhibit translation. Despite the thousands of miRNAs identified and validated in numerous plant species, only small numbers have been identified from the oilseed crop plant Brassica napus (canola) – especially in seeds.ResultsUsing next-generation sequencing technologies, we performed a comprehensive analysis of miRNAs during seed maturation at 9 time points from 10 days after flowering (DAF) to 50 DAF using whole seeds and included separate analyses of radicle, hypocotyl, cotyledon, embryo, endosperm and seed coat tissues at 4 selected time points. We identified more than 500 conserved miRNA or variant unique sequences with >300 sequence reads and also found 10 novel miRNAs. Only 27 of the conserved miRNA sequences had been previously identified in B. napus (miRBase Release 18). More than 180 MIRNA loci were identified/annotated using the B. rapa genome as a surrogate for the B.napus A genome. Numerous miRNAs were expressed in a stage- or tissue-specific manner suggesting that they have specific functions related to the fine tuning of transcript abundance during seed development. miRNA targets in B. napus were predicted and their expression patterns profiled using microarray analyses. Global correlation analysis of the expression patterns of miRNAs and their targets revealed complex miRNA-target gene regulatory networks during seed development. The miR156 family was the most abundant and the majority of the family members were primarily expressed in the embryo.ConclusionsLarge numbers of miRNAs with diverse expression patterns, multiple-targeting and co-targeting of many miRNAs, and complex relationships between expression of miRNAs and targets were identified in this study. Several key miRNA-target expression patterns were identified and new roles of miRNAs in regulating seed development are suggested. miR156, miR159, miR172, miR167, miR158 and miR166 are the major contributors to the network controlling seed development and maturation through their pivotal roles in plant development. miR156 may regulate the developmental transition to germination.

Collaboration


Dive into the Adrian J. Cutler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammed Saleem

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hong Wang

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Mary K. Loewen

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Larry C. Fowke

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken M. Nelson

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daiqing Huang

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge