Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian J. Ivinson is active.

Publication


Featured researches published by Adrian J. Ivinson.


American Journal of Human Genetics | 2005

A high-density screen for linkage in multiple sclerosis.

Stephen Sawcer; Maria Ban; Mel Maranian; Tai Wai Yeo; Alastair Compston; Andrew Kirby; Mark J. Daly; De Jager Pl; Emily Walsh; Eric S. Lander; John D. Rioux; David A. Hafler; Adrian J. Ivinson; Jacqueline Rimmler; Simon G. Gregory; Silke Schmidt; Margaret A. Pericak-Vance; Eva Åkesson; Jan Hillert; Pameli Datta; Annette Bang Oturai; Lars P. Ryder; Hanne F. Harbo; Anne Spurkland; Kjell-Morten Myhr; Mikko Laaksonen; David R. Booth; Robert Heard; Graeme J. Stewart; Robin Lincoln

To provide a definitive linkage map for multiple sclerosis, we have genotyped the Illumina BeadArray linkage mapping panel (version 4) in a data set of 730 multiplex families of Northern European descent. After the application of stringent quality thresholds, data from 4,506 markers in 2,692 individuals were included in the analysis. Multipoint nonparametric linkage analysis revealed highly significant linkage in the major histocompatibility complex (MHC) on chromosome 6p21 (maximum LOD score [MLS] 11.66) and suggestive linkage on chromosomes 17q23 (MLS 2.45) and 5q33 (MLS 2.18). This set of markers achieved a mean information extraction of 79.3% across the genome, with a Mendelian inconsistency rate of only 0.002%. Stratification based on carriage of the multiple sclerosis-associated DRB1*1501 allele failed to identify any other region of linkage with genomewide significance. However, ordered-subset analysis suggested that there may be an additional locus on chromosome 19p13 that acts independent of the main MHC locus. These data illustrate the substantial increase in power that can be achieved with use of the latest tools emerging from the Human Genome Project and indicate that future attempts to systematically identify susceptibility genes for multiple sclerosis will have to involve large sample sizes and an association-based methodology.


Annals of Neurology | 2011

Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci

Nikolaos A. Patsopoulos; Federica Esposito; Joachim Reischl; Stephan Lehr; David Bauer; Jürgen Heubach; Rupert Sandbrink; Christoph Pohl; Gilles Edan; Ludwig Kappos; David Miller; Javier Montalbán; Chris H. Polman; Mark Freedman; Hans-Peter Hartung; Barry G. W. Arnason; Giancarlo Comi; Stuart D. Cook; Massimo Filippi; Douglas S. Goodin; Paul O'Connor; George C. Ebers; Dawn Langdon; Anthony T. Reder; Anthony Traboulsee; Frauke Zipp; Sebastian Schimrigk; Jan Hillert; Melanie Bahlo; David R. Booth

To perform a 1‐stage meta‐analysis of genome‐wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci.


Annals of Neurology | 2007

A second major histocompatibility complex susceptibility locus for multiple sclerosis

Tai Wai Yeo; Philip L. De Jager; Simon G. Gregory; Lisa F. Barcellos; Amie Walton; An Goris; Chiara Fenoglio; Maria Ban; Craig J. Taylor; Reyna S. Goodman; Emily Walsh; Cara S Wolfish; Roger Horton; James A. Traherne; Stephan Beck; John Trowsdale; Stacy J. Caillier; Adrian J. Ivinson; Todd Green; Susan Pobywajlo; Eric S. Lander; Margaret A. Pericak-Vance; Jonathan L. Haines; Mark J. Daly; Jorge R. Oksenberg; Stephen L. Hauser; Alastair Compston; David A. Hafler; John D. Rioux; Stephen Sawcer

Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA‐DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The role of the CD58 locus in multiple sclerosis

Philip L. De Jager; Clare Baecher-Allan; Lisa M. Maier; Ariel T. Arthur; Linda Ottoboni; Lisa F. Barcellos; Jacob L. McCauley; Stephen Sawcer; An Goris; Janna Saarela; Roman Yelensky; Alkes L. Price; Virpi Leppa; Nick Patterson; Paul I. W. de Bakker; Dong Tran; Cristin Aubin; Susan Pobywajlo; Elizabeth Rossin; Xinli Hu; Charles Ashley; Edwin Choy; John D. Rioux; Margaret A. Pericak-Vance; Adrian J. Ivinson; David R. Booth; Graeme J. Stewart; Aarno Palotie; Leena Peltonen; Bénédicte Dubois

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system associated with demyelination and axonal loss. A whole genome association scan suggested that allelic variants in the CD58 gene region, encoding the costimulatory molecule LFA-3, are associated with risk of developing MS. We now report additional genetic evidence, as well as resequencing and fine mapping of the CD58 locus in patients with MS and control subjects. These efforts identify a CD58 variant that provides further evidence of association with MS (P = 1.1 × 10−6, OR 0.82) and the single protective effect within the CD58 locus is captured by the rs2300747G allele. This protective rs2300747G allele is associated with a dose-dependent increase in CD58 mRNA expression in lymphoblastic cell lines (P = 1.1 × 10−10) and in peripheral blood mononuclear cells from MS subjects (P = 0.0037). This protective effect of enhanced CD58 expression on circulating mononuclear cells in patients with MS is supported by finding that CD58 mRNA expression is higher in MS subjects during clinical remission. Functional investigations suggest a potential mechanism whereby increases in CD58 expression, mediated by the protective allele, up-regulate the expression of transcription factor FoxP3 through engagement of the CD58 receptor, CD2, leading to the enhanced function of CD4+CD25high regulatory T cells that are defective in subjects with MS.


Annals of Neurology | 2012

Meta‐analysis of Parkinson's Disease: Identification of a novel locus, RIT2

Nathan Pankratz; Gary W. Beecham; Anita L. DeStefano; Ted M. Dawson; Kimberly F. Doheny; Stewart A. Factor; Taye H. Hamza; Albert Y. Hung; Bradley T. Hyman; Adrian J. Ivinson; Dmitri Krainc; Jeanne C. Latourelle; Lorraine N. Clark; Karen Marder; Eden R. Martin; Richard Mayeux; Owen A. Ross; Clemens R. Scherzer; David K. Simon; Caroline M. Tanner; Jeffery M. Vance; Zbigniew K. Wszolek; Cyrus P. Zabetian; Richard H. Myers; Haydeh Payami; William K. Scott; Tatiana Foroud

Genome‐wide association (GWAS) methods have identified genes contributing to Parkinsons disease (PD); we sought to identify additional genes associated with PD susceptibility.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis.

John Landers; Judith Melki; Vincent Meininger; Jonathan D. Glass; Leonard H. van den Berg; Michael A. van Es; Peter Sapp; Paul W.J. van Vught; Diane McKenna-Yasek; Hylke M. Blauw; Ting Jan Cho; Meraida Polak; Lijia Shi; Anne Marie Wills; Wendy J. Broom; Nicola Ticozzi; Vincenzo Silani; Aslihan Ozoguz; Ildefonso Rodriguez-Leyva; Jan H. Veldink; Adrian J. Ivinson; Christiaan G.J. Saris; Betsy A. Hosler; Alayna Barnes-Nessa; Nicole R. Couture; John H. J. Wokke; Thomas J. Kwiatkowski; Roel A. Ophoff; Simon Cronin; Orla Hardiman

Amyotrophic lateral sclerosis is a degenerative disorder of motor neurons that typically develops in the 6th decade and is uniformly fatal, usually within 5 years. To identify genetic variants associated with susceptibility and phenotypes in sporadic ALS, we performed a genome-wide SNP analysis in sporadic ALS cases and controls. A total of 288,357 SNPs were screened in a set of 1,821 sporadic ALS cases and 2,258 controls from the U.S. and Europe. Survival analysis was performed using 1,014 deceased sporadic cases. Top results for susceptibility were further screened in an independent sample set of 538 ALS cases and 556 controls. SNP rs1541160 within the KIFAP3 gene (encoding a kinesin-associated protein) yielded a genome-wide significant result (P = 1.84 × 10−8) that withstood Bonferroni correction for association with survival. Homozygosity for the favorable allele (CC) conferred a 14.0 months survival advantage. Sequence, genotypic and functional analyses revealed that there is linkage disequilibrium between rs1541160 and SNP rs522444 within the KIFAP3 promoter and that the favorable alleles of rs1541160 and rs522444 correlate with reduced KIFAP3 expression. No SNPs were associated with risk of sporadic ALS, site of onset, or age of onset. We have identified a variant within the KIFAP3 gene that is associated with decreased KIFAP3 expression and increased survival in sporadic ALS. These findings support the view that genetic factors modify phenotypes in this disease and that cellular motor proteins are determinants of motor neuron viability.


Genes and Immunity | 2009

The expanding genetic overlap between multiple sclerosis and type I diabetes

David R. Booth; Robert Heard; Graeme J. Stewart; An Goris; Rita Dobosi; Bénédicte Dubois; Åslaug R. Lorentzen; Elisabeth G. Celius; Hanne F. Harbo; Anne Spurkland; Tomas Olsson; Ingrid Kockum; Jenny Link; Jan Hillert; Maria Ban; Amie Baker; Stephen Sawcer; Alastair Compston; Tania Mihalova; Richard C. Strange; Clive Hawkins; Gillian Ingram; Neil Robertson; Philip L. De Jager; David A. Hafler; Lisa F. Barcellos; Adrian J. Ivinson; Margaret A. Pericak-Vance; Jorge R. Oksenberg; Stephen L. Hauser

Familial clustering of autoimmune disease is well recognized and raises the possibility that some susceptibility genes may predispose to autoimmunity in general. In light of this observation, it might be expected that some of the variants of established relevance in one autoimmune disease may also be relevant in other related conditions. On the basis of this hypothesis, we tested seven single nucleotide polymorphisms (SNPs) that are known to be associated with type I diabetes in a large multiple sclerosis data set consisting of 2369 trio families, 5737 cases and 10 296 unrelated controls. Two of these seven SNPs showed evidence of association with multiple sclerosis; that is rs12708716 from the CLEC16A gene (P=1.6 × 10−16) and rs763361 from the CD226 gene (P=5.4 × 10−8). These findings thereby identify two additional multiple sclerosis susceptibility genes and lend support to the notion of autoimmune susceptibility genes.


American Journal of Human Genetics | 2013

Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls

Sergio E. Baranzini; Pouya Khankhanian; Nikolaos A. Patsopoulos; Michael Li; Jim Stankovich; Chris Cotsapas; Helle Bach Søndergaard; Maria Ban; Nadia Barizzone; Laura Bergamaschi; David R. Booth; Dorothea Buck; Paola Cavalla; Elisabeth G. Celius; Manuel Comabella; Giancarlo Comi; Alastair Compston; Isabelle Cournu-Rebeix; Sandra D’Alfonso; Vincent Damotte; Lennox Din; Bénédicte Dubois; Irina Elovaara; Federica Esposito; Bertrand Fontaine; Andre Franke; An Goris; Pierre-Antoine Gourraud; Christiane Graetz; Franca Rosa Guerini

Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits.


European Journal of Human Genetics | 2009

Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor

Maria Ban; An Goris; Åslaug R. Lorentzen; Amie Baker; Tania Mihalova; Gillian Ingram; David R. Booth; Robert Heard; Graeme J. Stewart; Elke Bogaert; Bénédicte Dubois; Hanne F. Harbo; Elisabeth G. Celius; Anne Spurkland; Richard C. Strange; Clive Hawkins; Neil Robertson; Frank Dudbridge; James Wason; Philip L. De Jager; David A. Hafler; John D. Rioux; Adrian J. Ivinson; Jacob L. McCauley; Margaret A. Pericak-Vance; Jorge R. Oksenberg; Stephen L. Hauser; David M. H. Sexton; Jonathan L. Haines; Stephen Sawcer

In a recent genome-wide association study (GWAS) based on 12 374 non-synonymous single nucleotide polymorphisms we identified a number of candidate multiple sclerosis susceptibility genes. Here, we describe the extended analysis of 17 of these loci undertaken using an additional 4234 patients, 2983 controls and 2053 trio families. In the final analysis combining all available data, we found that evidence for association was substantially increased for one of the 17 loci, rs34536443 from the tyrosine kinase 2 (TYK2) gene (P=2.7 × 10−6, odds ratio=1.32 (1.17–1.47)). This single nucleotide polymorphism results in an amino acid substitution (proline to alanine) in the kinase domain of TYK2, which is predicted to influence the levels of phosphorylation and therefore activity of the protein and so is likely to have a functional role in multiple sclerosis.


Lancet Neurology | 2008

Refining genetic associations in multiple sclerosis

David R. Booth; Robert Heard; Graeme J. Stewart; An Goris; Rita Dobosi; Bénédicte Dubois; Annette Bang Oturai; Helle Bach Søndergaard; Finn Sellebjerg; Janna Saarela; Virpi Leppa; A. Palotie; Leena Peltonen; Bertrand Fontaine; Isabelle Cournu-Rebeix; Françoise Clerget-Darpoux; Marie-Claude Babron; Frank Weber; Florian Holsboer; Bertram Müller-Myhsok; Peter Rieckmann; Antje Kroner; C. Graham; Koen Vandenbroeck; Stanley Hawkins; Sandra D'Alfonso; Laura Bergamaschi; Paola Naldi; Franca Rosa Guerini; Marco Salvetti

Genome-wide association studies involve several hundred thousand markers and, even when quality control is scrupulous, are invariably confounded by residual uncorrected errors that can falsely inflate the apparent difference between cases and controls (so-called genomic inflation). As a consequence such studies inevitably generate false positives alongside genuine associations. By use of Bayesian logic and empirical data, the Wellcome Trust Case Control Consortium suggested that association studies in complex disease should involve at least 2000 cases and 2000 controls, at which level they predicted that p values of less than 5×10 −7 would more commonly signify true positives than false positives.

Collaboration


Dive into the Adrian J. Ivinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Rioux

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Maria Ban

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge