Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian J. Lambert is active.

Publication


Featured researches published by Adrian J. Lambert.


The EMBO Journal | 2003

A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling

Karim S. Echtay; Telma C. Esteves; Julian L. Pakay; Mika B. Jekabsons; Adrian J. Lambert; Manuel Portero-Otin; Reinald Pamplona; Antonio Vidal-Puig; Steven Wang; Stephen J. Roebuck; Martin D. Brand

Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4‐hydroxy‐2‐nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans‐retinoic acid, trans‐retinal and other 2‐alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal‐induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP‐sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate‐sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.


Biochemical Journal | 2004

Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane.

Adrian J. Lambert; Martin D. Brand

The relationship between protonmotive force and superoxide production by mitochondria is poorly understood. To address this issue, the rate of superoxide production from complex I of rat skeletal muscle mitochondria incubated under a variety of conditions was assessed. By far, the largest rate of superoxide production was from mitochondria respiring on succinate; this rate was almost abolished by rotenone or piericidin, indicating that superoxide production from complex I is large under conditions of reverse electron transport. The high rate of superoxide production by complex I could also be abolished by uncoupler, confirming that superoxide production is sensitive to protonmotive force. It was inhibited by nigericin, suggesting that it is more dependent on the pH gradient across the mitochondrial inner membrane than on the membrane potential. These effects were examined in detail, leading to the conclusions that the effect of protonmotive force was mostly direct, and not indirect through changes in the redox state of the ubiquinone pool, and that the production of superoxide by complex I during reverse electron transport was at least 3-fold more sensitive to the pH gradient than to the membrane potential.


Aging Cell | 2007

Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms

Adrian J. Lambert; Helen M. Boysen; Julie A. Buckingham; Ting Yang; Andrej Podlutsky; Steven N. Austad; Thomas H. Kunz; Rochelle Buffenstein; Martin D. Brand

An inverse correlation between free radical production by isolated mitochondria and longevity in homeotherms has been reported, but previous comparative studies ignored possible confounding effects of body mass and phylogeny. We investigated this correlation by comparing rates of hydrogen peroxide (H2O2) production by heart mitochondria isolated from groups or pairs of species selected to have very different maximum lifespans but similar body masses (small mammals, medium‐sized mammals, birds). During succinate oxidation, H2O2 production rates were generally lower in the longer‐lived species; the differences arose at complex I of the electron transport chain during reverse electron transport. Additional data were obtained from large species and the final dataset comprised mouse, rat, white‐footed mouse, naked mole‐rat, Damara mole‐rat, guinea pig, baboon, little brown bat, Brazilian free‐tailed bat, ox, pigeon and quail. In this dataset, maximum lifespan was negatively correlated with H2O2 production at complex I during reverse electron transport. Analysis of residual maximum lifespan and residual H2O2 production revealed that this correlation was even more significant after correction for effects of body mass. To remove effects of phylogeny, independent phylogenetic contrasts were obtained from the residuals. These revealed an inverse association between maximum lifespan and H2O2 production that was significant by sign test, but fell short of significance by regression analysis. These findings indicate that enhanced longevity may be causally associated with low free radical production by mitochondria across species over two classes of vertebrate homeotherms.


Methods of Molecular Biology | 2009

Reactive Oxygen Species Production by Mitochondria

Adrian J. Lambert; Martin D. Brand

Oxidative damage to cellular macromolecules is believed to underlie the development of many pathological states and aging. The agents responsible for this damage are generally thought to be reactive oxygen species, such as superoxide, hydrogen peroxide, and hydroxyl radical. The main source of reactive species production within most cells is the mitochondria. Within the mitochondria the primary reactive oxygen species produced is superoxide, most of which is converted to hydrogen peroxide by the action of superoxide dismutase. The production of superoxide by mitochondria has been localized to several enzymes of the electron transport chain, including Complexes I and III and glycerol-3-phosphate dehydrogenase. In this chapter the current consensus view of sites, rates, mechanisms, and topology of superoxide production by mitochondria is described. A brief overview of the methods for measuring reactive oxygen species production in isolated mitochondria and cells is also presented.


FEBS Letters | 2004

Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3

Darren A. Talbot; Adrian J. Lambert; Martin D. Brand

Superoxide generated using exogenous xanthine oxidase indirectly activates an uncoupling protein (UCP)‐mediated proton conductance of the mitochondrial inner membrane. We investigated whether endogenous mitochondrial superoxide production could also activate proton conductance. When respiring on succinate, rat skeletal muscle mitochondria produced large amounts of matrix superoxide. Addition of GDP to inhibit UCP3 markedly inhibited proton conductance and increased superoxide production. Both superoxide production and the GDP‐sensitive proton conductance were suppressed by rotenone plus an antioxidant. Thus, endogenous superoxide can activate the proton conductance of UCP3, which in turn limits mitochondrial superoxide production. These observations provide a departure point for studies under more physiological conditions.


Biochimica et Biophysica Acta | 2008

Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport

Adrian J. Lambert; Julie A. Buckingham; Helen M. Boysen; Martin D. Brand

We investigated the effects of diphenyleneiodonium (DPI) on superoxide production by complex I in mitochondria isolated from rat skeletal muscle. Superoxide production was measured indirectly as hydrogen peroxide production. In a conventional medium containing chloride, DPI strongly inhibited superoxide production by complex I driven by reverse electron transport from succinate. In principle, this inhibition could be explained by an observed decrease in the mitochondrial pH gradient caused by the known chloride-hydroxide antiport activity of DPI. In a medium containing gluconate instead of chloride, DPI did not affect the pH gradient. In this gluconate medium, DPI still inhibited superoxide production driven by reverse electron transport, showing that the inhibition of superoxide production was not dependent on changes in the pH gradient. It had no effect on superoxide production during forward electron transport from NAD-linked substrates in the presence of rotenone (to maximise superoxide production from the flavin of complex I) or antimycin (to maximise superoxide production from complex III), suggesting that the effects of DPI were not through inhibition of the flavin. We conclude that DPI has the novel and potentially very useful ability to prevent superoxide production from the site in complex I that is active during reverse electron transport, without affecting superoxide production during forward electron transport.


Aging Cell | 2010

Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia

Adrian J. Lambert; Julie A. Buckingham; Helen M. Boysen; Martin D. Brand

Across a range of vertebrate species, it is known that there is a negative association between maximum lifespan and mitochondrial hydrogen peroxide production. In this report, we investigate the underlying biochemical basis of the low hydrogen peroxide production rate of heart mitochondria from a long‐lived species (pigeon) compared with a short‐lived species with similar body mass (rat). The difference in hydrogen peroxide efflux rate was not explained by differences in either superoxide dismutase activity or hydrogen peroxide removal capacity. During succinate oxidation, the difference in hydrogen peroxide production rate between the species was localized to the ΔpH‐sensitive superoxide producing site within complex I. Mitochondrial ΔpH was significantly lower in pigeon mitochondria compared with rat, but this difference in ΔpH was not great enough to explain the lower hydrogen peroxide production rate. As judged by mitochondrial flavin mononucleotide content and blue native polyacrylamide gel electrophoresis, pigeon mitochondria contained less complex I than rat mitochondria. Recalculation revealed that the rates of hydrogen peroxide production per molecule of complex I were the same in rat and pigeon. We conclude that mitochondria from the long‐lived pigeon display low rates of hydrogen peroxide production because they have low levels of complex I.


FEBS Letters | 2008

Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state

Adrian J. Lambert; Julie A. Buckingham; Martin D. Brand

The relationship between the rate of superoxide production by complex I and NAD(P)H redox state was investigated in rat skeletal muscle mitochondria. A high rate of superoxide production was observed during succinate oxidation; the rate during pyruvate oxidation was over fourfold lower. However, the NAD(P)H pool was significantly less reduced during succinate oxidation than during pyruvate oxidation. We conclude that there is no unique relationship between superoxide production by complex I and the reduction state of the NAD(P)H pool. Our data suggest that less than 10% of the superoxide originates from the flavin site during reverse electron transport from succinate.


Aging Cell | 2007

Research on mitochondria and aging, 2006-2007.

Adrian J. Lambert; Martin D. Brand

This review focuses on some of the ‘hot topics’ that fall under the general heading ‘mitochondria and aging’. For each selected topic, we highlight recent publications that have either addressed specific problems within the field or presented novel findings of interest regarding the links between mitochondria and aging. These include studies on the structure of complex I and the mechanisms of superoxide production by this complex; work showing a novel site of hydrogen peroxide production within mitochondria that is modulated by caloric restriction; explorations of the relationship between the rate of evolution of mitochondrial DNA and lifespan; a demonstration that mitochondrial DNA mutations do not limit lifespan in mice; and investigations of the effects of mitochondrial fission on aging. We also list other relevant articles of interest and suggest some key challenges for the field in the near future.


Aging Cell | 2010

Biomarkers of ageing in Drosophila

Jake Jacobson; Adrian J. Lambert; Manuel Portero-Otin; Reinald Pamplona; Tapiwanashe Magwere; Satomi Miwa; Yasmine Driege; Martin D. Brand; Linda Partridge

Low environmental temperature and dietary restriction (DR) extend lifespan in diverse organisms. In the fruit fly Drosophila, switching flies between temperatures alters the rate at which mortality subsequently increases with age but does not reverse mortality rate. In contrast, DR acts acutely to lower mortality risk; flies switched between control feeding and DR show a rapid reversal of mortality rate. Dietary restriction thus does not slow accumulation of aging‐related damage. Molecular species that track the effects of temperatures on mortality but are unaltered with switches in diet are therefore potential biomarkers of aging‐related damage. However, molecular species that switch upon instigation or withdrawal of DR are thus potential biomarkers of mechanisms underlying risk of mortality, but not of aging‐related damage. Using this approach, we assessed several commonly used biomarkers of aging‐related damage. Accumulation of fluorescent advanced glycation end products (AGEs) correlated strongly with mortality rate of flies at different temperatures but was independent of diet. Hence, fluorescent AGEs are biomarkers of aging‐related damage in flies. In contrast, five oxidized and glycated protein adducts accumulated with age, but were reversible with both temperature and diet, and are therefore not markers either of acute risk of dying or of aging‐related damage. Our approach provides a powerful method for identification of biomarkers of aging.

Collaboration


Dive into the Adrian J. Lambert's collaboration.

Top Co-Authors

Avatar

Martin D. Brand

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jake Jacobson

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge