Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Jäggi is active.

Publication


Featured researches published by Adrian Jäggi.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2016

GEROS-ISS: GNSS REflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station

Jens Wickert; Estel Cardellach; Manuel Martin-Neira; Jorge Bandeiras; Laurent Bertino; Ole Baltazar Andersen; Adriano Camps; Nuno Catarino; Bertrand Chapron; Fran Fabra; Nicolas Floury; Giuseppe Foti; Christine Gommenginger; Jason Hatton; Per Høeg; Adrian Jäggi; Michael Kern; Tong Lee; Zhijin Li; Hyuk Park; Nazzareno Pierdicca; Gerhard Ressler; A. Rius; Josep Rosello; Jan Saynisch; F. Soulat; C. K. Shum; Maximilian Semmling; Ana Sousa; Jiping Xie

GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans and of the ocean surface mean square slope, which is related to sea roughness and wind speed. These geophysical parameters are derived using reflected GNSS signals (GNSS reflectometry, GNSS-R). Secondary mission goals include atmosphere/ionosphere sounding using refracted GNSS signals (radio occultation, GNSS-RO) and remote sensing of land surfaces using GNSS-R. The GEROS-ISS mission objectives and its design, the current status, and ongoing activities are reviewed and selected scientific and technical results of the GEROS-ISS preparation phase are described.


Journal of Geodesy | 2017

CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis

Lars Prange; Etienne Orliac; Rolf Dach; Daniel Arnold; Gerhard Beutler; Stefan Schaer; Adrian Jäggi

This article describes the processing strategy and the validation results of CODE’s MGEX (COM) orbit and satellite clock solution, including the satellite systems GPS, GLONASS, Galileo, BeiDou, and QZSS. The validation with orbit misclosures and SLR residuals shows that the orbits of the new systems Galileo, BeiDou, and QZSS are affected by modelling deficiencies with impact on the orbit scale (e.g., antenna calibration, Earth albedo, and transmitter antenna thrust). Another weakness is the attitude and solar radiation pressure (SRP) modelling of satellites moving in the orbit normal mode—which is not yet correctly considered in the COM solution. Due to these issues, we consider the current state COM solution as preliminary. We, however, use the long-time series of COM products for identifying the challenges and for the assessment of model-improvements. The latter is demonstrated on the example of the solar radiation pressure (SRP) model, which has been replaced by a more generalized model. The SLR validation shows that the new SRP model significantly improves the orbit determination of Galileo and QZSS satellites at times when the satellite’s attitude is maintained by yaw-steering. The impact of this orbit improvement is also visible in the estimated satellite clocks—demonstrating the potential use of the new generation satellite clocks for orbit validation. Finally, we point out further challenges and open issues affecting multi-GNSS data processing that deserves dedicated studies.


Archive | 2012

AIUB-GRACE02S: Status of GRACE Gravity Field Recovery Using the Celestial Mechanics Approach

Adrian Jäggi; Gerhard Beutler; U. Meyer; Lars Prange; Rolf Dach; Leos Mervart

The gravity field model AIUB-GRACE02S is the second release of a model generated with the Celestial Mechanics Approach using GRACE data. Inter-satellite K-band range-rate measurements and GPS-derived kinematic positions serve as observations to solve for the Earth’s static gravity field in a generalized orbit determination problem. Apart from the normalized spherical harmonic coefficients up to degree 150, arc-specific parameters like initial conditions and pseudo-stochastic parameters are solved for in a rigorous least-squares adjustment based on both types of observations. The quality of AIUB-GRACE02S has significantly improved with respect to the earlier release 01 due to a refined orbit parametrization and the implementation of all relevant background models. AIUB-GRACE02S is based on 2 years of data and was derived in one iteration step from EGM96, which served as a priori gravity field model. Comparisons with levelling data and models from other groups are used to assess the suitability of the Celestial Mechanics Approach for GRACE gravity field determination.


Archive | 2010

GRACE Gravity Field Determination Using the Celestial Mechanics Approach – First Results

Adrian Jäggi; Gerhard Beutler; Leos Mervart

We present the first gravity field model AIUB-GRACE01S, which has been generated using the Celestial Mechanics Approach in an extended version. Inter-satellite K-band range-rate observations and GPS-derived kinematic positions are used to solve for the Earth’s gravity field parameters in a generalized orbit determination problem. Apart from the normalized spherical harmonic (SH) coefficients, arc-specific parameters like initial conditions and pseudo-stochastic pulses are set up as common parameters for all measurement types. Our first results based on 1 year of GRACE data demonstrate that the Earth’s static gravity field can be recovered with a good quality, even using EGM96 as a priori model and without accelerometer data and sophisticated background models like short-term mass variations. The use of accelerometer data and sophisticated background models will be a prerequisite for the near future, however, to further improve the inferred gravity field solutions.


Archive | 2014

Geocenter Coordinates from GNSS and Combined GNSS-SLR Solutions Using Satellite Co-locations

Daniela Thaller; Krzysztof Sośnica; Rolf Dach; Adrian Jäggi; Gerhard Beutler; Maria Mareyen; Bernd Richter

Satellite Laser Ranging (SLR) data to LAGEOS, ETALON and to Global Navigation Satellite Systems (GNSS) were combined with GNSS microwave data for 5 years. Including SLR data to GNSS satellites and estimating common orbit parameters allows it to connect both space-geodetic techniques using satellite instead of station co-location. We show that only SLR data to the spherical satellites can improve the geocenter estimates, whereas SLR data to the GNSS satellites suffer from the same GNSS orbit modelling deficiencies as in the analysis of microwave data.


Artificial Satellites | 2012

Sensitivity of Lageos Orbits to Global Gravity Field Models

Krzysztof Sośnica; Daniela Thaller; Adrian Jäggi; Rolf Dach; Gerhard Beutler

Sensitivity of Lageos Orbits to Global Gravity Field Models Precise orbit determination is an essential task when analyzing SLR data. The quality of the satellite orbits strongly depends on the models used for dynamic orbit determination. The global gravity field model used is one of the crucial elements, which has a significant influence on the satellite orbit and its accuracy. We study the impact of different gravity field models on the determination of the LAGEOS-1 and -2 orbits for data of the year 2008. Eleven gravity field models are compared, namely JGM3 and EGM96 based mainly on SLR, terrestrial and altimetry data, AIUB-CHAMP03S based uniquely on GPS-measurements made by CHAMP, AIUB-GRACE03S, ITG-GRACE2010 based on GRACE data, and the combined gravity field models based on different measurement techniques, such as EGM2008, EIGEN-GL04C, EIGEN51C, GOCO02S, GO-CONS-2-DIR-R2, AIUB-SST. The gravity field models are validated using the RMS of the observation residuals of 7-day LAGEOS solutions. The study reveals that GRACE-based models have the smallest RMS values (i.e., about 7.15 mm), despite the fact that no SLR data were used to determine them. The coefficient C20 is not always well estimated in GRACE-only models. There is a significant improvement of the gravity field models based on CHAMP, GRACE and GOCE w.r.t. models of the pre-CHAMP era. The LAGEOS orbits are particularly sensitive to the long wavelength part of the gravity fields. Differences of the estimated orbits due to different gravity field models are noticeable up to degree and order of about 30. The RMS of residuals improves from about 40 mm for degree 8, to about 7 mm for the solutions up to degrees 14 and higher. The quality of the predicted orbits is studied, as well.


Archive | 2009

Gravity Field Determination at the AIUB - The Celestial Mechanics Approach

Lars Prange; Adrian Jäggi; Gerhard Beutler; Rolf Dach; L Mervart

We present the gravity field model AIUB-CHAMP01S, which has been generated using the Celestial Mechanics approach. GPS-derived kinematic positions of low Earth orbiters (LEOs) are used as pseudo-observations to solve for the Earth’s gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic (SH) coefficients, arc-specific parameters (e.g., accelerometer calibration parameters, dynamical parameters, or pseudo-stochastic parameters) are set up and normal equations are written for all daily LEO arcs. The daily normal equations are combined to weekly, monthly, and annual systems before inversion. The parametrization can be modified on the normal equation level without a new time-consuming set up of the daily normal equations. The results based on one year of CHAMP data demonstrate that the Celestial Mechanics approach is comparable in quality with other approaches


Archive | 2015

The CODE MGEX orbit and clock solution

Lars Prange; Rolf Dach; Simon Lutz; Stefan Schaer; Adrian Jäggi

The Center for Orbit Determination in Europe (CODE) is contributing as a global analysis center to the International GNSS Service (IGS) since many years. The processing of GPS and GLONASS data is well established in CODE’s ultra-rapid, rapid, and final product lines. With the introduction of new signals for the established and new GNSS, new challenges and opportunities are arising for the GNSS data management and processing. The IGS started the Multi-GNSS-EXperiment (MGEX) in 2012 in order to gain first experience with the new data formats and to develop new strategies for making optimal use of these additional measurements. CODE has started to contribute to IGS MGEX with a consistent, rigorously combined triple-system orbit solution (GPS, GLONASS, and Galileo). SLR residuals for the computed Galileo satellite orbits are of the order of 10 cm. Furthermore CODE established a GPS and Galileo clock solution. A quality assessment shows that these experimental orbit and clock products allow even a Galileo-only precise point positioning (PPP) with accuracies on the decimeter- (static PPP) to meter-level (kinematic PPP) for selected stations.


Journal of Geodesy | 2014

Comparison of GOCE-GPS gravity fields derived by different approaches

Oliver Baur; Heike Bock; Eduard Höck; Adrian Jäggi; S. Krauss; Torsten Mayer-Gürr; Tilo Reubelt; Christian Siemes; Norbert Zehentner

Several techniques have been proposed to exploit GNSS-derived kinematic orbit information for the determination of long-wavelength gravity field features. These methods include the (i) celestial mechanics approach, (ii) short-arc approach, (iii) point-wise acceleration approach, (iv) averaged acceleration approach, and (v) energy balance approach. Although there is a general consensus that—except for energy balance—these methods theoretically provide equivalent results, real data gravity field solutions from kinematic orbit analysis have never been evaluated against each other within a consistent data processing environment. This contribution strives to close this gap. Target consistency criteria for our study are the input data sets, period of investigation, spherical harmonic resolution, a priori gravity field information, etc. We compare GOCE gravity field estimates based on the aforementioned approaches as computed at the Graz University of Technology, the University of Bern, the University of Stuttgart/Austrian Academy of Sciences, and by RHEA Systems for the European Space Agency. The involved research groups complied with most of the consistency criterions. Deviations only occur where technical unfeasibility exists. Performance measures include formal errors, differences with respect to a state-of-the-art GRACE gravity field, (cumulative) geoid height differences, and SLR residuals from precise orbit determination of geodetic satellites. We found that for the approaches (i) to (iv), the cumulative geoid height differences at spherical harmonic degree 100 differ by only


Archive | 2009

Assessment of GPS-only Observables for Gravity Field Recovery from GRACE

Adrian Jäggi; Gerhard Beutler; Lars Prange; Rolf Dach; Leos Mervart

Collaboration


Dive into the Adrian Jäggi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krzysztof Jakub Sosnica

Wroclaw University of Environmental and Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Leos Mervart

Czech Technical University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge