Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Leip is active.

Publication


Featured researches published by Adrian Leip.


Environmental Research Letters | 2014

Nitrogen footprints: past, present and future

James N. Galloway; Wilfried Winiwarter; Adrian Leip; Allison M. Leach; Albert Bleeker; Jan Willem Erisman

The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entitys consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems.


Archive | 2011

Integrating nitrogen fluxes at the European scale

Adrian Leip; Beat Achermann; Gilles Billen; Albert Bleeker; A. F. Bouwman; Wim de Vries; U. Dragosits; Ulrike Doring; Dave Fernall; Markus Geupel; jurg Herolstab; Penny J Johnes; Anne-Christine Le Gall; Suvi Monni; Rostislav Neveceral; Lorenzo Orlandini; Michel Prud'homme; Hannes Reuter; David Simpson; Günther Seufert; Till Spranger; Mark A. Sutton; John van Aardenne; Maren Voss; Wilfried Winiwarter

Executive summary Nature of the problem • Environmental problems related to nitrogen concern all economic sectors and impact all media: atmosphere, pedosphere, hydrosphere and anthroposphere. • Therefore, the integration of fluxes allows an overall coverage of problems related to reactive nitrogen (Nr) in the environment, which is not accessible from sectoral approaches or by focusing on specific media. Approaches • This chapter presents a set of high resolution maps showing key elements of the N flux budget across Europe, including N2 and Nr fluxes. • Comparative nitrogen budgets are also presented for a range of European countries, highlighting the most efficient strategies for mitigating Nr problems at a national scale. A new European Nitrogen Budget (EU-27) is presented on the basis of state-of-the-art Europe-wide models and databases focusing on different segments of Europe’s society. Key findings • From c. 18 Tg Nr yr −1 input to agriculture in the EU-27, only about 7 Tg Nr yr− 1 find their way to the consumer or are further processed by industry. • Some 3.7 Tg Nr yr−1 is released by the burning of fossil fuels in the EU-27, whereby the contribution of the industry and energy sectors is equal to that of the transport sector. More than 8 Tg Nr yr−1 are disposed of to the hydrosphere, while the EU-27 is a net exporter of reactive nitrogen through atmospheric transport of c. 2.3 Tg Nr yr−1. • The largest single sink for Nr appears to be denitrifi cation to N2 in European coastal shelf regions (potentially as large as the input of mineral fertilizer, about 11 Tg N yr–1 for the EU-27); however, this sink is also the most uncertain, because of the uncertainty of Nr import from the open ocean. Major uncertainties • National nitrogen budgets are diffi cult to compile using a large range of data sources and are currently available only for a limited number of countries. • Modelling approaches have been used to fill in the data gaps in some of these budgets, but it became obvious during this study that further research is needed in order to collect necessary data and make national nitrogen budgets inter-comparable across Europe. • In some countries, due to inconsistent or contradictory information coming from different data sources, closure of the nitrogen budget was not possible. Recommendations • The large variety of problems associated with the excess of Nr in the European environment,including adverse impacts, requires an integrated nitrogen management approach that would allow for creation and closure of N budgets within European environments. • Development of nitrogen budgets nationwide, their assessment and management could become an effective tool to prioritize measures and prevent unwanted side effects.


Environmental Research Letters | 2015

Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity

Adrian Leip; Gilles Billen; Josette Garnier; Bruna Grizzetti; Luis Lassaletta; Stefan Reis; David Simpson; Mark A. Sutton; Wim de Vries; Franz Weiss; Henk Westhoek

Livestock production systems currently occupy around 28% of the land surface of the European Union (equivalent to 65% of the agricultural land). In conjunction with other human activities, livestock production systems affect water, air and soil quality, global climate and biodiversity, altering the biogeochemical cycles of nitrogen, phosphorus and carbon. Here, we quantify the contribution of European livestock production to these major impacts. For each environmental effect, the contribution of livestock is expressed as shares of the emitted compounds and land used, as compared to the whole agricultural sector. The results show that the livestock sector contributes significantly to agricultural environmental impacts. This contribution is 78% for terrestrial biodiversity loss, 80% for soil acidification and air pollution (ammonia and nitrogen oxides emissions), 81% for global warming, and 73% for water pollution (both N and P). The agriculture sector itself is one of the major contributors to these environmental impacts, ranging between 12% for global warming and 59% for N water quality impact. Significant progress in mitigating these environmental impacts in Europe will only be possible through a combination of technological measures reducing livestock emissions, improved food choices and reduced food waste of European citizens.


Archive | 2011

Nitrogen flows from European regional watersheds to coastal marine waters

Gilles Billen; Marie Silvestre; Bruna Grizzetti; Adrian Leip; Fayçal Bouraoui; H Behrendt; Josette Garnier; Christoph Humborg; Erik Smedberg; Penny J Johnes; Øyvind Kaste; Cj Curtis; Ahti Lepistö; Pirkko Kortelainen; Raja Ganeshram; A. H. W. Beusen; Maren Voss

Approaches A comprehensive evaluation of net anthropogenic inputs of reactive nitrogen (NANI) through atmospheric deposition, crop N fi xation, • fertiliser use and import of food and feed has been carried out for all European watersheds. A database on N, P and Si fl uxes delivered at the basin outlets has been assembled. A number of modelling approaches based on either statistical regression analysis or mechanistic description of the processes involved • in nitrogen transfer and transformations have been developed for relating N inputs to watersheds to outputs into coastal marine ecosystems.


Environmental Research Letters | 2015

Lost water and nitrogen resources due to EU consumer food waste

D. Vanham; Fayçal Bouraoui; Adrian Leip; Bruna Grizzetti; Giovanni Bidoglio

The European Parliament recently called for urgent measures to halve food waste in the EU, where consumers are responsible for a major part of total waste along the food supply chain. Due to a lack of data on national food waste statistics, uncertainty in (consumer) waste quantities (and the resulting associated quantities of natural resources) is very high, but has never been previously assessed in studies for the EU. Here we quantify: (1) EU consumer food waste, and (2) associated natural resources required for its production, in term of water and nitrogen, as well as estimating the uncertainty of these values. Total EU consumer food waste averages 123 (min 55–max 190) kg/capita annually (kg/cap/yr), i.e. 16% (min 7–max 24%) of all food reaching consumers. Almost 80%, i.e. 97 (min 45–max 153) kg/cap/yr is avoidable food waste, which is edible food not consumed. We have calculated the water and nitrogen (N) resources associated with avoidable food waste. The associated blue water footprint (WF) (the consumption of surface and groundwater resources) averages 27 litre per capita per day (min 13–max 40 l/cap/d), which slightly exceeds the total blue consumptive EU municipal water use. The associated green WF (consumptive rainwater use) is 294 (min 127–max 449) l/cap/d, equivalent to the total green consumptive water use for crop production in Spain. The nitrogen (N) contained in avoidable food waste averages 0.68 (min 0.29–max 1.08) kg/cap/yr. The food production N footprint (any remaining N used in the food production process) averages 2.74 (min 1.02–max 4.65) kg/cap/yr, equivalent to the use of mineral fertiliser by the UK and Germany combined. Among all the food product groups wasted, meat accounts for the highest amounts of water and N resources, followed by wasted cereals. The results of this study provide essential insights and information on sustainable consumption and resource efficiency for both EU policies and EU consumers.


Archive | 2011

Future scenarios of nitrogen in Europe

Wilfried Winiwarter; J.P. Hettelingh; Alex F. Bouwman; Wim de Vries; Jan Willem Erisman; James N. Galloway; Z. Klimont; Allison M. Leach; Adrian Leip; Christian Palliere; Uwe A. Schneider; Till Spranger; Mark A. Sutton; Anastasia Svirejeva-Hopkins; Klaas W. van der Hoek; Peter Witzke

The future effects of nitrogen in the environment will depend on the extent of nitrogen use and the practical application techniques of nitrogen in a similar way as in the past. Projections and scenarios are appropriate tools for extrapolating current knowledge into the future. However, these tools will not allow future system turnovers to be predicted.


PLOS ONE | 2015

Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961–2010

Nicolas Viovy; Nicolas Vuichard; Philippe Ciais; Matteo Campioli; Katja Klumpp; Raphaël Martin; Adrian Leip; Jean-François Soussana

About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961–2010. Here “potential grass-fed ruminant livestock density” denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961–2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.


Environmental Pollution | 2011

Assessing the Impact of Cross Compliance Measures on Nitrogen Fluxes from European Farmlands with DNDC-EUROPE

Marco Follador; Adrian Leip; Lorenzo Orlandini

We investigated the effects of the agricultural Cross Compliance measures for European cultivated lands, focusing on nitrogen (N) fluxes from corn fields. Four scenarios have been designed according to some conservation farming practices, namely no-till, max manure, catch crop and N splitting. Results indicated that (1) in the no-till scenario the N(2)O fluxes are decreased during the first simulated years, with a return to default fluxes in following years; no-till particularly decreased N(2)O emission in the dryer and colder simulation spatial units (HSMUs); (2) the no-till and the N splitting scenarios slightly increased the N surplus because of a decrease in plant uptake; (3) introducing a rotation with alfalfa decreased the N leaching in the corn crops following the catch crops; and (4) the application of fertilizer and manure during the cold and wet seasons led to an increase of N leaching.


Archive | 2015

An economic assessment of GHG mitigation policy options for EU agriculture

Benjamin Van Doorslaer; Peter Witzke; Ingo Huck; Franz Weiss; Thomas Fellmann; Guna Salputra; Torbjörn Jansson; Dusan Drabik; Adrian Leip

The report presents an overview of the historical and projected development of agricultural GHG emissions in the EU. The major objective of the report is to present the improvements made in the CAPRI modelling system with respect to GHG emission accounting and especially regarding the implementation of endogenous technological mitigation options. Furthermore, the CAPRI model was applied to provide a quantitative assessment of illustrative GHG mitigation policy options in the agricultural sector, and their production and economic implications.


Environmental Research Letters | 2014

Nitrogen-neutrality: a step towards sustainability

Adrian Leip; Allison M. Leach; Patrick Musinguzi; Trust Tumwesigye; Giregon Olupot; John Stephen Tenywa; Joseph Mudiope; Olivia Hutton; C.M.d.S. Cordovil; Mateete A. Bekunda; James N. Galloway

We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, Nneutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66kgN. A total of US

Collaboration


Dive into the Adrian Leip's collaboration.

Top Co-Authors

Avatar

Mark A. Sutton

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

Wilfried Winiwarter

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar

Albert Bleeker

Energy Research Centre of the Netherlands

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruna Grizzetti

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gilles Billen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Wim de Vries

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

G.J. Reinds

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.P. Lesschen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge