Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian M. Altenhoff is active.

Publication


Featured researches published by Adrian M. Altenhoff.


PLOS Computational Biology | 2009

Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods

Adrian M. Altenhoff; Christophe Dessimoz

Accurate genome-wide identification of orthologs is a central problem in comparative genomics, a fact reflected by the numerous orthology identification projects developed in recent years. However, only a few reports have compared their accuracy, and indeed, several recent efforts have not yet been systematically evaluated. Furthermore, orthology is typically only assessed in terms of function conservation, despite the phylogeny-based original definition of Fitch. We collected and mapped the results of nine leading orthology projects and methods (COG, KOG, Inparanoid, OrthoMCL, Ensembl Compara, Homologene, RoundUp, EggNOG, and OMA) and two standard methods (bidirectional best-hit and reciprocal smallest distance). We systematically compared their predictions with respect to both phylogeny and function, using six different tests. This required the mapping of millions of sequences, the handling of hundreds of millions of predicted pairs of orthologs, and the computation of tens of thousands of trees. In phylogenetic analysis or in functional analysis where high specificity is required, we find that OMA and Homologene perform best. At lower functional specificity but higher coverage level, OrthoMCL outperforms Ensembl Compara, and to a lesser extent Inparanoid. Lastly, the large coverage of the recent EggNOG can be of interest to build broad functional grouping, but the method is not specific enough for phylogenetic or detailed function analyses. In terms of general methodology, we observe that the more sophisticated tree reconstruction/reconciliation approach of Ensembl Compara was at times outperformed by pairwise comparison approaches, even in phylogenetic tests. Furthermore, we show that standard bidirectional best-hit often outperforms projects with more complex algorithms. First, the present study provides guidance for the broad community of orthology data users as to which database best suits their needs. Second, it introduces new methodology to verify orthology. And third, it sets performance standards for current and future approaches.


Nucleic Acids Research | 2011

OMA 2011: orthology inference among 1000 complete genomes

Adrian M. Altenhoff; Adrian Schneider; Gaston H. Gonnet; Christophe Dessimoz

OMA (Orthologous MAtrix) is a database that identifies orthologs among publicly available, complete genomes. Initiated in 2004, the project is at its 11th release. It now includes 1000 genomes, making it one of the largest resources of its kind. Here, we describe recent developments in terms of species covered; the algorithmic pipeline—in particular regarding the treatment of alternative splicing, and new features of the web (OMA Browser) and programming interface (SOAP API). In the second part, we review the various representations provided by OMA and their typical applications. The database is publicly accessible at http://omabrowser.org.


Nucleic Acids Research | 2015

The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements

Adrian M. Altenhoff; Nives Škunca; Natasha Glover; Clément-Marie Train; Anna Sueki; Ivana Piližota; Kevin Gori; Bartłomiej Tomiczek; Steven Müller; Henning Redestig; Gaston H. Gonnet; Christophe Dessimoz

The Orthologous Matrix (OMA) project is a method and associated database inferring evolutionary relationships amongst currently 1706 complete proteomes (i.e. the protein sequence associated for every protein-coding gene in all genomes). In this update article, we present six major new developments in OMA: (i) a new web interface; (ii) Gene Ontology function predictions as part of the OMA pipeline; (iii) better support for plant genomes and in particular homeologs in the wheat genome; (iv) a new synteny viewer providing the genomic context of orthologs; (v) statically computed hierarchical orthologous groups subsets downloadable in OrthoXML format; and (vi) possibility to export parts of the all-against-all computations and to combine them with custom data for ‘client-side’ orthology prediction. OMA can be accessed through the OMA Browser and various programmatic interfaces at http://omabrowser.org.


PLOS Computational Biology | 2012

Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs

Adrian M. Altenhoff; Romain A. Studer; Marc Robinson-Rechavi; Christophe Dessimoz

The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the “ortholog conjecture”, or standard model of phylogenomics, protein function changes rapidly after duplication, leading to paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of GO term frequency among species, variation of background similarity among species pairs, and propagated annotation bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model organisms such as E. coli, yeast or mouse have conserved function with human proteins.


PLOS Computational Biology | 2012

Quality of computationally inferred gene ontology annotations.

Nives Škunca; Adrian M. Altenhoff; Christophe Dessimoz

Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms. Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when they use evidence other than experiments from primary literature. This work provides the means to identify the subset of electronic annotations that can be relied upon—an important outcome given that >98% of all annotations are inferred without direct curation.


Methods of Molecular Biology | 2012

Inferring Orthology and Paralogy

Adrian M. Altenhoff; Christophe Dessimoz

The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplication, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy. We survey both graph-based approaches (and their various grouping strategies) and tree-based approaches, which solve the more general problem of gene/species tree reconciliation. We discuss conceptual differences among the various orthology inference methods and databases, and examine the difficult issue of verifying and benchmarking orthology predictions. Finally, we review typical applications of orthologous genes, groups, and reconciled trees and conclude with thoughts on future methodological developments.


PLOS ONE | 2013

Inferring hierarchical orthologous groups from orthologous gene pairs.

Adrian M. Altenhoff; Manuel Gil; Gaston H. Gonnet; Christophe Dessimoz

Hierarchical orthologous groups are defined as sets of genes that have descended from a single common ancestor within a taxonomic range of interest. Identifying such groups is useful in a wide range of contexts, including inference of gene function, study of gene evolution dynamics and comparative genomics. Hierarchical orthologous groups can be derived from reconciled gene/species trees but, this being a computationally costly procedure, many phylogenomic databases work on the basis of pairwise gene comparisons instead (“graph-based” approach). To our knowledge, there is only one published algorithm for graph-based hierarchical group inference, but both its theoretical justification and performance in practice are as of yet largely uncharacterised. We establish a formal correspondence between the orthology graph and hierarchical orthologous groups. Based on that, we devise GETHOGs (“Graph-based Efficient Technique for Hierarchical Orthologous Groups”), a novel algorithm to infer hierarchical groups directly from the orthology graph, thus without needing gene tree inference nor gene/species tree reconciliation. GETHOGs is shown to correctly reconstruct hierarchical orthologous groups when applied to perfect input, and several extensions with stringency parameters are provided to deal with imperfect input data. We demonstrate its competitiveness using both simulated and empirical data. GETHOGs is implemented as a part of the freely-available OMA standalone package (http://omabrowser.org/standalone). Furthermore, hierarchical groups inferred by GETHOGs (“OMA HOGs”) on >1,000 genomes can be interactively queried via the OMA browser (http://omabrowser.org).


Bioinformatics | 2012

Toward community standards in the quest for orthologs

Christophe Dessimoz; Toni Gabaldón; David S. Roos; Erik L. L. Sonnhammer; Javier Herrero; Adrian M. Altenhoff; Rolf Apweiler; Michael Ashburner; Judith A. Blake; Brigitte Boeckmann; Alan Bridge; Elspeth Bruford; Mike Cherry; Matthieu Conte; Durand Dannie; Ruchira S. Datta; Jean-Baka Domelevo Entfellner; Ingo Ebersberger; Michael Y. Galperin; Jacob M. Joseph; Tina Koestler; Evgenia V. Kriventseva; Odile Lecompte; Jack Leunissen; Suzanna E. Lewis; Benjamin Linard; Michael S. Livstone; Hui-Chun Lu; María Martín; Raja Mazumder

The identification of orthologs—genes pairs descended from a common ancestor through speciation, rather than duplication—has emerged as an essential component of many bioinformatics applications, ranging from the annotation of new genomes to experimental target prioritization. Yet, the development and application of orthology inference methods is hampered by the lack of consensus on source proteomes, file formats and benchmarks. The second ‘Quest for Orthologs’ meeting brought together stakeholders from various communities to address these challenges. We report on achievements and outcomes of this meeting, focusing on topics of particular relevance to the research community at large. The Quest for Orthologs consortium is an open community that welcomes contributions from all researchers interested in orthology research and applications. Contact: [email protected]


Nature Methods | 2016

Standardized benchmarking in the quest for orthologs

Adrian M. Altenhoff; Brigitte Boeckmann; Salvador Capella-Gutiérrez; Daniel A. Dalquen; Todd DeLuca; Kristoffer Forslund; Jaime Huerta-Cepas; Benjamin Linard; Cecile Pereira; Leszek P. Pryszcz; Fabian Schreiber; Alan Wilter Sousa da Silva; Damian Szklarczyk; Clément-Marie Train; Peer Bork; Odile Lecompte; Christian von Mering; Ioannis Xenarios; Kimmen Sjölander; Lars Juhl Jensen; María Martín; Matthieu Muffato; Toni Gabaldón; Suzanna E. Lewis; Paul D. Thomas; Erik L. L. Sonnhammer; Christophe Dessimoz

Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision–recall trade-offs. As a result, it is difficult to assess the performance of orthology inference methods. Here, we present a community effort to establish standards and an automated web-based service to facilitate orthology benchmarking. Using this service, we characterize 15 well-established inference methods and resources on a battery of 20 different benchmarks. Standardized benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimum requirement for new tools and resources, and guides the development of more accurate orthology inference methods.


PLOS ONE | 2013

The Impact of Gene Duplication, Insertion, Deletion, Lateral Gene Transfer and Sequencing Error on Orthology Inference: A Simulation Study

Daniel A. Dalquen; Adrian M. Altenhoff; Gaston H. Gonnet; Christophe Dessimoz

The identification of orthologous genes, a prerequisite for numerous analyses in comparative and functional genomics, is commonly performed computationally from protein sequences. Several previous studies have compared the accuracy of orthology inference methods, but simulated data has not typically been considered in cross-method assessment studies. Yet, while dependent on model assumptions, simulation-based benchmarking offers unique advantages: contrary to empirical data, all aspects of simulated data are known with certainty. Furthermore, the flexibility of simulation makes it possible to investigate performance factors in isolation of one another. Here, we use simulated data to dissect the performance of six methods for orthology inference available as standalone software packages (Inparanoid, OMA, OrthoInspector, OrthoMCL, QuartetS, SPIMAP) as well as two generic approaches (bidirectional best hit and reciprocal smallest distance). We investigate the impact of various evolutionary forces (gene duplication, insertion, deletion, and lateral gene transfer) and technological artefacts (ambiguous sequences) on orthology inference. We show that while gene duplication/loss and insertion/deletion are well handled by most methods (albeit for different trade-offs of precision and recall), lateral gene transfer disrupts all methods. As for ambiguous sequences, which might result from poor sequencing, assembly, or genome annotation, we show that they affect alignment score-based orthology methods more strongly than their distance-based counterparts.

Collaboration


Dive into the Adrian M. Altenhoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha Glover

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivana Piližota

University College London

View shared research outputs
Top Co-Authors

Avatar

Brigitte Boeckmann

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Suzanna E. Lewis

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge