Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian M. Piliponsky is active.

Publication


Featured researches published by Adrian M. Piliponsky.


Nature | 2008

The development of allergic inflammation

Stephen J. Galli; Mindy Tsai; Adrian M. Piliponsky

Allergic disorders, such as anaphylaxis, hay fever, eczema and asthma, now afflict roughly 25% of people in the developed world. In allergic subjects, persistent or repetitive exposure to allergens, which typically are intrinsically innocuous substances common in the environment, results in chronic allergic inflammation. This in turn produces long-term changes in the structure of the affected organs and substantial abnormalities in their function. It is therefore important to understand the characteristics and consequences of acute and chronic allergic inflammation, and in particular to explore how mast cells can contribute to several features of this maladaptive pattern of immunological reactivity.


American Journal of Pathology | 2005

Mast Cell-Deficient W-sash c-kit Mutant KitW-sh/W-sh Mice as a Model for Investigating Mast Cell Biology in Vivo

Michele A. Grimbaldeston; Ching Cheng Chen; Adrian M. Piliponsky; Mindy Tsai; See Ying Tam; Stephen J. Galli

Mice carrying certain mutations in the white spotting (W) locus (ie, c-kit) exhibit reduced c-kit tyrosine kinase-dependent signaling that results in mast cell deficiency and other phenotypic abnormalities. The c-kit mutations in Kit(W/W-v) mice impair melanogenesis and result in anemia, sterility, and markedly reduced levels of tissue mast cells. In contrast, Kit(W-sh/W-sh) mice, bearing the W-sash (W(sh)) inversion mutation, have mast cell deficiency but lack anemia and sterility. We report that adult Kit(W-sh/W-sh) mice had a profound deficiency in mast cells in all tissues examined but normal levels of major classes of other differentiated hematopoietic and lymphoid cells. Unlike Kit(W/W-v) mice, Kit(W-sh/W-sh) mice had normal numbers of TCR gammadelta intraepithelial lymphocytes in the intestines and did not exhibit a high incidence of idiopathic dermatitis, ulcers, or squamous papillomas of the stomach, but like Kit(W/W-v) mice, they lacked interstitial cells of Cajal in the gut and exhibited bile reflux into the stomach. Systemic or local reconstitution of mast cell populations was achieved in nonirradiated adult Kit(W-sh/W-sh) mice by intravenous, intraperitoneal, or intradermal injection of wild-type bone marrow-derived cultured mast cells but not by transplantation of wild-type bone marrow cells. Thus, Kit(W-sh/W-sh) mice represent a useful model for mast cell research, especially for analyzing mast cell function in vivo.


Immunological Reviews | 2007

Mast cells in the promotion and limitation of chronic inflammation

Martin Metz; Michele A. Grimbaldeston; Susumu Nakae; Adrian M. Piliponsky; Mindy Tsai; Stephen J. Galli

Summary:  Observations of increased numbers of mast cells at sites of chronic inflammation have been reported for over a hundred years. Light and electron microscopic evidence of mast cell activation at such sites, taken together with the known functions of the diverse mediators, cytokines, and growth factors that can be secreted by appropriately activated mast cells, have suggested a wide range of possible functions for mast cells in promoting (or suppressing) many features of chronic inflammation. Similarly, these and other lines of evidence have implicated mast cells in a variety of adaptive or pathological responses that are associated with persistent inflammation at the affected sites. Definitively characterizing the importance of mast cells in chronic inflammation in humans is difficult. However, mice that genetically lack mast cells, especially those which can undergo engraftment with wildtype or genetically altered mast cells, provide a means to investigate the importance of mast cells and specific mast cell functions or products in diverse models of chronic inflammation. Such work has confirmed that mast cells can significantly influence multiple features of chronic inflammatory responses, through diverse effects that can either promote or, perhaps more surprisingly, suppress aspects of these responses.


Nature | 2004

Mast cells promote homeostasis by limiting endothelin-1-induced toxicity

Marcus Maurer; Jochen Wedemeyer; Martin Metz; Adrian M. Piliponsky; Karsten Weller; Devavani Chatterjea; David E. Clouthier; Masashi Yanagisawa; Mindy Tsai; Stephen J. Galli

Endothelin-1 (ET-1) is a 21-amino-acid peptide, derived from vascular endothelial cells, with potent vasoconstrictor activity. ET-1 has been implicated in diverse physiological or pathological processes, including the vascular changes associated with sepsis. However, the factors that regulate ET-1-associated toxicity during bacterial infections, or in other settings, are not fully understood. Both the pathology associated with certain allergic and autoimmune disorders, and optimal host defence against bacterial and parasitic infections are mediated by mast cells. In vitro, mast cells can produce ET-1 (ref. 11), undergo ET-1-dependent and endothelin-A receptor (ETA)-dependent activation, and release proteases that degrade ET-1 (ref. 14). Although the potential relationships between mast cells and the ET-1 system thus may be complex, the importance of interactions between ET-1 and mast cells in vivo is obscure. Here we show that ETA-dependent mast-cell activation can diminish both ET-1 levels and ET-1-induced pathology in vivo, and also can contribute to optimal survival during acute bacterial peritonitis. These findings identify a new biological function for mast cells: promotion of homeostasis by limiting the toxicity associated with an endogenous mediator.


Experimental Dermatology | 2003

What is the physiological function of mast cells

M. Maurer; Theoharis C. Theoharides; R. D. Granstein; Stephan C. Bischoff; John Bienenstock; B. Henz; P. Kovanen; Adrian M. Piliponsky; N. Kambe; Harissis Vliagoftis; Francesca Levi-Schaffer; M. Metz; Y. Miyachi; D. Befus; P. Forsythe; Yukihiko Kitamura; Stephen J. Galli

Abstract:  Under physiological conditions, skin mast cells preferentially localize around nerves, blood vessels and hair follicles. This observation, which dates back to Paul Ehrlich, intuitively suggests that these enigmatic, multifacetted protagonists of natural immunity are functionally relevant to many more aspects of tissue physiology than just to the generation of inflammatory and vasodilatory responses to IgE‐dependent environmental antigens. And yet, for decades, mainstream‐mast cell research has been dominated by a focus on the – undisputedly prominent and important – mast cell functions in type I immune responses and in the pathogenesis and management of allergic diseases. Certainly, it is hard to believe that the very large and rather selectively distributed number of mast cells in normal, uninflamed, non‐infected, non‐traumatized mammalian skin or mucosal tissue is simply hanging around there lazily day and night, just to wait for the odd allergen or parasite‐associated antigen to come by so the mast cell can finally swing into action. Indeed, the past decade has witnessed a renaissance of mast cell research ‘beyond allergy’, along with a more systematic exploration of the surprisingly wide range of physiological functions that mast cells may be involved in. The current debate sketches many of the exciting new horizons that have recently come into our vision during this intriguing, ongoing search.


The International Journal of Biochemistry & Cell Biology | 2003

Mast cells in allergy and beyond

Ilaria Puxeddu; Adrian M. Piliponsky; Ido Bachelet; Francesca Levi-Schaffer

Mast cells (MC) are highly granulated tissue dwelling cells, widely distributed throughout the body in connective tissues and on mucosal surfaces. They are derived from bone marrow progenitors that migrate into the blood and subsequently into the tissues, where they undergo final maturation. Mast cell proliferation, differentiation, survival and activation are regulated by stem cell factor, the ligand for the c-kit tyrosine kinase receptor, expressed on the mast cell surface. They release a large number of pro-inflammatory and immunoregulatory mediators after activation induced by either immunoglobulin E-dependent or immunoglobulin E-independent mechanisms. Mast cells have been most widely studied in the context of allergic reactions and parasite infections, but there is now compelling evidences that they are important players in innate and acquired immunity, wound healing, fibrosis, tumors and autoimmune diseases. This review will discuss current advances in these fields.


Biomaterials | 2001

Intracellular delivery mediated by an ethosomal carrier

E Touitou; Biana Godin; Nava Dayan; Celeste Weiss; Adrian M. Piliponsky; Francesca Levi-Schaffer

The goal of this work was to investigate the efficiency of transcellular delivery into Swiss albino mice 3T3 fibroblasts of molecules with various physico-chemical characteristics from ethosomes, phospholipid vesicular carriers containing ethanol. The probes chosen were: 4-(4-diethylamino) styryl-N-methylpyridinium iodide (D-289), rhodamine red dihexadecanoylglycerophosphoethanolamine (RR) and fluorescent phosphatidylcholine (PC*). The penetration of these fluorescent probes into fibroblasts and nude mice skin was examined by CLSM and FACS. CLSM micrographs showed that ethosomes facilitated the penetration of all probes into the cells, as evident from the high-intensity fluorescence. In comparison, when incorporated in hydroethanolic solution or classic liposomes, almost no fluorescence was detected. The intracellular presence of each of the three probes tested, was evident after 3 min of incubation. Furthermore, with ethosomal D-289, fluorescence was also seen in the fibroblast nucleus. Enhanced delivery of molecules from the ethosomal carrier was also observed in permeation experiments with the hydrophilic calcein and lypophilic RR to whole nude mouse skin. Calcein penetrated the skin to a depth of 160, 80 and 60 microm from ethosomes, hydroethanolic solution and liposomes, respectively. Maximum fluorescence intensities measured for RR delivered from ethosomes, hydroethanolic solution and liposomes were 150, 40 and 20 AU, respectively. Fibroblast viability tests showed that the ethosomal carrier is not toxic to the cultured cells.


Blood | 2011

Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice

Jennifer N. Lilla; Ching-Cheng Chen; Kaori Mukai; Maya J. BenBarak; Christopher B. Franco; Janet Kalesnikoff; Mang Yu; Mindy Tsai; Adrian M. Piliponsky; Stephen J. Galli

It has been reported that the intracellular antiapoptotic factor myeloid cell leukemia sequence 1 (Mcl-1) is required for mast cell survival in vitro, and that genetic manipulation of Mcl-1 can be used to delete individual hematopoietic cell populations in vivo. In the present study, we report the generation of C57BL/6 mice in which Cre recombinase is expressed under the control of a segment of the carboxypeptidase A3 (Cpa3) promoter. C57BL/6-Cpa3-Cre; Mcl-1(fl/fl) mice are severely deficient in mast cells (92%-100% reduced in various tissues analyzed) and also have a marked deficiency in basophils (58%-78% reduced in the compartments analyzed), whereas the numbers of other hematopoietic cell populations exhibit little or no changes. Moreover, Cpa3-Cre; Mcl-1(fl/fl) mice exhibited marked reductions in the tissue swelling and leukocyte infiltration that are associated with both mast cell- and IgE-dependent passive cutaneous anaphylaxis (except at sites engrafted with in vitro-derived mast cells) and a basophil- and IgE-dependent model of chronic allergic inflammation, and do not develop IgE-dependent passive systemic anaphylaxis. Our findings support the conclusion that Mcl-1 is required for normal mast cell and basophil development/survival in vivo in mice, and also suggest that Cpa3-Cre; Mcl-1(fl/fl) mice may be useful in analyzing the roles of mast cells and basophils in health and disease.


American Journal of Pathology | 2010

Mast Cell-Derived TNF Can Exacerbate Mortality during Severe Bacterial Infections in C57BL/6-KitW-sh/W-sh Mice

Adrian M. Piliponsky; Ching Cheng Chen; Michele A. Grimbaldeston; Stacy M. Burns-Guydish; Jonathan Hardy; Janet Kalesnikoff; Christopher H. Contag; Mindy Tsai; Stephen J. Galli

We used mast cell-engrafted genetically mast cell-deficient C57BL/6-Kit(W-sh/W-sh) mice to investigate the roles of mast cells and mast cell-derived tumor necrosis factor in two models of severe bacterial infection. In these mice, we confirmed findings derived from studies of mast cell-deficient WBB6F(1)-Kit(W/W-v) mice indicating that mast cells can promote survival in cecal ligation and puncture (CLP) of moderate severity. However, we found that the beneficial role of mast cells in this setting can occur independently of mast cell-derived tumor necrosis factor. By contrast, using mast cell-engrafted C57BL/6-Kit(W-sh/W-sh) mice, we found that mast cell-derived tumor necrosis factor can increase mortality during severe CLP and can also enhance bacterial growth and hasten death after intraperitoneal inoculation of Salmonella typhimurium. In WBB6F(1)-Kit(W-sh/W-sh) mice, mast cells enhanced survival during moderately severe CLP but did not significantly change the survival observed in severe CLP. Our findings in three types of genetically mast cell-deficient mice thus support the hypothesis that, depending on the circumstances (including mouse strain background, the nature of the mutation resulting in a mast cell deficiency, and type and severity of infection), mast cells can have either no detectable effect or opposite effects on survival during bacterial infections, eg, promoting survival during moderately severe CLP associated with low mortality but, in C57BL/6-Kit(W-sh/W-sh) mice, increasing mortality during severe CLP or infection with S. typhimurium.


Nature Medicine | 2008

Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis.

Adrian M. Piliponsky; Ching Cheng Chen; Toshihiko Nishimura; Martin Metz; Eon J. Rios; Paul R. Dobner; Etsuko Wada; Keiji Wada; Sherma Zacharias; Uma M. Mohanasundaram; James D. Faix; Magnus Åbrink; Gunnar Pejler; Ronald G. Pearl; Mindy Tsai; Stephen J. Galli

Sepsis is a complex, incompletely understood and often fatal disorder, typically accompanied by hypotension, that is considered to represent a dysregulated host response to infection. Neurotensin (NT) is a 13-amino-acid peptide that, among its multiple effects, induces hypotension. We find that intraperitoneal and plasma concentrations of NT are increased in mice after severe cecal ligation and puncture (CLP), a model of sepsis, and that mice treated with a pharmacological antagonist of NT, or NT-deficient mice, show reduced mortality during severe CLP. In mice, mast cells can degrade NT and reduce NT-induced hypotension and CLP-associated mortality, and optimal expression of these effects requires mast cell expression of neurotensin receptor 1 and neurolysin. These findings show that NT contributes to sepsis-related mortality in mice during severe CLP and that mast cells can lower NT concentrations, and suggest that mast cell–dependent reduction in NT levels contributes to the ability of mast cells to enhance survival after CLP.

Collaboration


Dive into the Adrian M. Piliponsky's collaboration.

Top Co-Authors

Avatar

Francesca Levi-Schaffer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilaria Puxeddu

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunnar Pejler

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Magnus Åbrink

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge