Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrián M.T. Silva is active.

Publication


Featured researches published by Adrián M.T. Silva.


Environment International | 2015

An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU

Ana R. Ribeiro; Olga C. Nunes; M.F.R. Pereira; Adrián M.T. Silva

Environmental pollution is a recognized issue of major concern since a wide range of contaminants has been found in aquatic environment at ngL(-1) to μgL(-1) levels. In the year 2000, a strategy was defined to identify the priority substances concerning aquatic ecosystems, followed by the definition of environmental quality standards (EQS) in 2008. Recently it was launched the Directive 2013/39/EU that updates the water framework policy highlighting the need to develop new water treatment technologies to deal with such problem. This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species (cadmium, lead, mercury, nickel and their derivatives). The Directive 2013/39/EU includes several pesticides (aldrin, dichlorodiphenyltrichloroethane, dicofol, dieldrin, endrin, endosulfan, isodrin, heptachlor, lindane, pentachlorophenol, chlorpyrifos, chlorfenvinphos, dichlorvos, atrazine, simazine, terbutryn, diuron, isoproturon, trifluralin, cypermethrin, alachlor), solvents (dichloromethane, dichloroethane, trichloromethane and carbon tetrachloride), perfluorooctane sulfonic acid and its derivatives (PFOS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol and octylphenol, as well as the three compounds included in the recommendation for the first watch list of substances (diclofenac, 17-alpha-ethinylestradiol (EE2) and 17-beta-estradiol (E2)). Some particular pesticides (aclonifen, bifenox, cybutryne, quinoxyfen), organotin compounds (tributyltin), dioxins and dioxin-like compounds, brominated diphenylethers, hexabromocyclododecanes and di(2-ethylhexyl)phthalate are also defined in this Directive, but studies dealing with AOPs are missing. AOPs are recognized tools to destroy recalcitrant compounds or, at least, to transform them into biodegradable species. Diuron (a phenylurea herbicide) and atrazine (from the triazine chemical class) are the most studied pesticides from Directive 2013/39/EU. Fenton-based processes are the most frequently applied to treat priority compounds in water and their efficiency typically increases with the operating temperature as well as under UV or solar light. Heterogeneous photocatalysis is the second most used treatment to destroy pollutants defined in the Directive. Ozone alone promotes the partial oxidation of pollutants, and an increase in the effluent biodegradability, but complete mineralization of pollutants is difficult. To overcome this drawback, ozonation has been combined with heterogeneous catalysts, addition of H2O2, other AOPs (such as photocatalysis) or membrane technologies.


Environmental Science and Pollution Research | 2012

Design of graphene-based TiO2 photocatalysts—a review

Sergio Morales-Torres; Luisa M. Pastrana-Martínez; José L. Figueiredo; Joaquim L. Faria; Adrián M.T. Silva

There is a recent increase in the interest of designing high-performance photocatalysts using graphene-based materials. This review gathers some important aspects of graphene–TiO2, graphene oxide–TiO2, and reduced graphene oxide–TiO2 composites, which are of especial relevance as next generation photocatalysts. The methods used for the preparation of these materials, the associated mechanistic fundamentals, and the application of graphene-based composites on the photocatalytic degradation of pollutants are reviewed. Some structural, textural, and chemical properties of these materials and other photo-assisted applications, such as hydrogen production from water splitting and dye-sensitized solar cells, are also briefly included.


Water Research | 2016

Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495.

Marta O. Barbosa; Nuno F.F. Moreira; Ana R. Ribeiro; M.F.R. Pereira; Adrián M.T. Silva

Although there are no legal discharge limits for micropollutants into the environment, some regulations have been published in the last few years. Recently, a watch list of substances for European Union-wide monitoring was reported in the Decision 2015/495/EU of 20 March 2015. Besides the substances previously recommended to be included by the Directive 39/2013/EU, namely two pharmaceuticals (diclofenac and the synthetic hormone 17-alpha-ethinylestradiol (EE2)) and a natural hormone (17-beta-estradiol (E2)), the first watch list of 10 substances/groups of substances also refers three macrolide antibiotics (azithromycin, clarithromycin and erythromycin), other natural hormone (estrone (E1)), some pesticides (methiocarb, oxadiazon, imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid and triallate), a UV filter (2-ethylhexyl-4-methoxycinnamate) and an antioxidant (2,6-di-tert-butyl-4-methylphenol) commonly used as food additive. Since little is known about the removal of most of the substances included in the Decision 2015/495/EU, particularly regarding realistic concentrations in aqueous environmental samples, this review aims to: (i) overview the European policy in the water field; (ii) briefly describe the most commonly used conventional and advanced treatment processes to remove micropollutants; (iii) summarize the relevant data published in the last decade, regarding occurrence and removal in aqueous matrices of the 10 substances/groups of substances that were recently included in the first watch list for European Union monitoring (Decision 2015/495/EU); and (iv) highlight the lack of reports concerning some substances of the watch list, the study of un-spiked aquatic matrices and the assessment of transformation by-products.


Journal of Hazardous Materials | 2008

Catalytic properties of carbon materials for wet oxidation of aniline

Helder T. Gomes; Bruno F. Machado; Andreia Ribeiro; Ivo Moreira; Márcio Rosário; Adrián M.T. Silva; José L. Figueiredo; Joaquim L. Faria

A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 degrees C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N(2) adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.


Journal of Colloid and Interface Science | 2015

Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies.

Ana P.M. Tavares; Cláudia G. Silva; Goran Dražić; Adrián M.T. Silva; José M. Loureiro; Joaquim L. Faria

The biocatalytic performance of immobilized enzyme systems depends mostly on the intrinsic properties of both biomolecule and support, immobilization technique and immobilization conditions. Multi-walled carbon nanotubes (MWCNTs) possess unique features for enzyme immobilization by adsorption. Enhanced catalytic activity and stability can be achieved by optimization of the immobilization conditions and by investigating the effect of operational parameters. Laccase was immobilized over MWCNTs by adsorption. The hybrid material was characterized by Fourier transformed infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM, respectively). The effect of different operational conditions (contact time, enzyme concentration and pH) on laccase immobilization was investigated. Optimized conditions were used for thermal stability, kinetic, and storage and operational stability studies. The optimal immobilization conditions for a laccase concentration of 3.75μL/mL were a pH of 9.0 and a contact time of 30min (522 Ulac/gcarrier). A decrease in the thermal stability of laccase was observed after immobilization. Changes in ΔS and ΔH of deactivation were found for the immobilized enzyme. The Michaelis-Menten kinetic constant was higher for laccase/MWCNT system than for free laccase. Immobilized laccase maintained (or even increased) its catalytic performance up to nine cycles of utilization and revealed long-term storage stability.


Chemical Engineering Science | 2003

Catalytic studies in wet oxidation of effluents from formaldehyde industry

Adrián M.T. Silva; Isabel M. L. Castelo-Branco; Rosa M. Quinta-Ferreira; Janez Levec

Abstract Development and design of active catalysts for the oxidation of formaldehyde present in wastewaters is of great importance. In this context, catalytic performance studies for oxidation of high formaldehyde containing solutions (1500 ppm ) were carried out in a semibatch high-pressure reactor at 190–220°C and 15–35 bar of oxygen partial pressure. The removal efficiency of total organic carbon (TOC) was evaluated experimentally under different solid catalysts, using several heterogeneous composite oxides prepared in our laboratory (Mn/Ce, Co/Ce and Ag/Ce), as well as a commercial catalyst (CuO–ZnO/Al 2 O 3 ). The Mn/Ce catalyst was the more active leading to high TOC conversions (99.4%). The TOC reductions were lower using Co/Ce, Ag/Ce and CuO–ZnO/Al 2 O 3 , respectively, 71.3%, 54.2% and 78.7%. Attempts were made to identify the influence of different Mn/Ce ratios. A high molar fraction of Mn leads to high TOC abatements. During the preparation procedure of catalysts the drying temperature does not affect significantly the catalytic area while increasing calcination temperature leads to lower surface areas. Carbon capacity adsorption was not observed for the Mn/Ce and CuO–ZnO/Al 2 O 3 catalyst and leaching of the correspondent metals, Mn, Cu and Zn, was not significant. The catalytic wet oxidation (CWO) process was studied with an industrial high formaldehyde concentration effluent (800 ppm ) . Using an Mn/Ce catalyst the formaldehyde concentration decreased from 800 to 0.1 ppm and ammoniacal nitrogen from 420 to 155 ppm while 91.7% in TOC reduction was observed. These conversions were higher than those obtained with the commercial CuO–ZnO/Al 2 O 3 catalyst. Therefore, Mn/Ce catalysts seem to be interesting options for the treatment of effluents from formaldehyde industry by CWO process.


Water Research | 2015

Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater.

Nff Moreira; C.A. Orge; Ana R. Ribeiro; Joaquim L. Faria; Olga C. Nunes; Mfr Pereira; Adrián M.T. Silva

The degradation of two organic pollutants (amoxicillin and diclofenac) in 0.1 mM aqueous solutions was studied by using advanced oxidation processes, namely ozonation, photolysis, photolytic ozonation, photocatalysis and photocatalytic ozonation. Diclofenac was degraded quickly under direct photolysis by artificial light (medium-pressure vapor arc, λ(exc) > 300 nm), while amoxicillin remained very stable. In the presence of ozone, regardless of the type of process, complete degradation of both organic pollutants was observed in less than 20 min. Photolysis or ozonation on their own led to modest values of total organic carbon (TOC) removal (<6% or 41%, respectively in 180 min), while for photocatalysis (no ozone present) a significant fraction of nonoxidizable compounds remained in the treated water (∼15% after 180 min). In the case of photolytic ozonation, the kinetics of TOC removal was slow. In contrast, a relatively fast and complete mineralization of amoxicillin and diclofenac (30 and 120 min, respectively) was achieved when applying the photocatalytic ozonation process. The absence of toxicity of the treated waters was confirmed by growth inhibition assays using two different microorganisms, Escherichia coli and Staphylococcus aureus. Photocatalytic ozonation was also applied to an urban wastewater spiked with both amoxicillin and diclofenac. The parent pollutants were easily oxidized, but the TOC removal was only as much as 68%, mainly due to the persistent presence of oxamic acid in the treated sample. The same treatment allowed the effective degradation of a wide group of micropollutants (pesticides, pharmaceuticals, hormones and an industrial compound) detected in non-spiked urban wastewater.


Water Research | 2015

Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water

Luisa M. Pastrana-Martínez; Sergio Morales-Torres; José L. Figueiredo; Joaquim L. Faria; Adrián M.T. Silva

Flat sheet ultrafiltration (UF) membranes with photocatalytic properties were prepared with lab-made TiO2 and graphene oxide-TiO2 (GOT), and also with a reference TiO2 photocatalyst from Evonik (P25). These membranes were tested in continuous operation mode for the degradation and mineralization of a pharmaceutical compound, diphenhydramine (DP), and an organic dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation. The effect of NaCl was investigated considering simulated brackish water (NaCl 0.5 g L(-1)) and simulated seawater (NaCl 35 g L(-1)). The results indicated that the membranes prepared with the GOT composite (M-GOT) exhibited the highest photocatalytic activity, outperforming those prepared with bare TiO2 (M-TiO2) and P25 (M-P25), both inactive under visible light illumination. The best performance of M-GOT may be due to the lower band-gap energy (2.9 eV) of GOT. In general, the permeate flux was also higher for M-GOT probably due to a combined effect of its highest photocatalytic activity, highest hydrophilicity (contact angles of 11°, 17° and 18° for M-GOT, M-TiO2 and M-P25, respectively) and higher porosity (71%). The presence of NaCl had a detrimental effect on the efficiency of the membranes, since chloride anions can act as hole and hydroxyl radical scavengers, but it did not affect the catalytic stability of these membranes. A hierarchically ordered membrane was also prepared by intercalating a freestanding GO membrane in the structure of the M-GOT membrane (M-GO/GOT). The results showed considerably higher pollutant removal in darkness and good photocatalytic activity under near-UV/Vis and visible light irradiation in continuous mode experiments.


Journal of Hazardous Materials | 2018

A review on environmental monitoring of water organic pollutants identified by EU guidelines

João Sousa; Ana R. Ribeiro; Marta O. Barbosa; M. Fernando R. Pereira; Adrián M.T. Silva

The contamination of fresh water is a global concern. The huge impact of natural and anthropogenic organic substances that are constantly released into the environment, demands a better knowledge of the chemical status of Earths surface water. Water quality monitoring studies have been performed targeting different substances and/or classes of substances, in different regions of the world, using different types of sampling strategies and campaigns. This review article aims to gather the available dispersed information regarding the occurrence of priority substances (PSs) and contaminants of emerging concern (CECs) that must be monitored in Europe in surface water, according to the European Union Directive 2013/39/EU and the Watch List of Decision 2015/495/EU, respectively. Other specific organic pollutants not considered in these EU documents as substances of high concern, but with reported elevated frequency of detection at high concentrations, are also discussed. The search comprised worldwide publications from 2012, considering at least one of the following criteria: 4 sampling campaigns per year, wet and dry seasons, temporal and/or spatial monitoring of surface (river, estuarine, lake and/or coastal waters) and ground waters. The highest concentrations were found for: (i) the PSs atrazine, alachlor, trifluralin, heptachlor, hexachlorocyclohexane, polycyclic aromatic hydrocarbons and di(2-ethylhexyl)phthalate; (ii) the CECs azithromycin, clarithromycin, erythromycin, diclofenac, 17α-ethinylestradiol, imidacloprid and 2-ethylhexyl 4-methoxycinnamate; and (iii) other unregulated organic compounds (caffeine, naproxen, metolachlor, estriol, dimethoate, terbuthylazine, acetaminophen, ibuprofen, trimethoprim, ciprofloxacin, ketoprofen, atenolol, Bisphenol A, metoprolol, carbofuran, malathion, sulfamethoxazole, carbamazepine and ofloxacin). Most frequent substances as well as those found at highest concentrations in different seasons and regions, together with available risk assessment data, may be useful to identify possible future PS candidates.


Water Research | 2013

Photocatalytic degradation of endocrine disruptor compounds under simulated solar light.

Vanessa Maroga Mboula; V. Héquet; Yves Andres; Luisa M. Pastrana-Martínez; J.M. Doña-Rodríguez; Adrián M.T. Silva; Polycarpos Falaras

Nanostructured titanium materials with high UV-visible activity were synthesized in the collaborative project Clean Water FP7. In this study, the efficiency of some of these catalysts to degrade endocrine disruptor compounds, using bisphenol A as the model compound, was evaluated. Titanium dioxide P25 (AEROXIDE(®) TiO2, Evonik Degussa) was used as the reference. The photocatalytic degradation was carried out under the UV part of a simulated solar light (280-400 nm) and under the full spectrum of a simulated solar light (200 nm-30 μm). Catalytic efficiency was assessed using several indicators such as the conversion yield, the mineralization yield, by-product formation and the endocrine disruption effect of by-products. The new synthesized catalysts exhibited a significant degradation of bisphenol A, with the so-called ECT-1023t being the most efficient. The intermediates formed during photocatalytic degradation experiments with ECT-1023t as catalyst were monitored and identified. The estrogenic effect of the intermediates was also evaluated in vivo using a ChgH-GFP transgenic medaka line. The results obtained show that the formation of intermediates is related to the nature of the catalyst and depends on the experimental conditions. Moreover, under simulated UV, in contrast with the results obtained using P25, the by-products formed with ECT-1023t as catalyst do not present an estrogenic effect.

Collaboration


Dive into the Adrián M.T. Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helder T. Gomes

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Helder Gomes

Faculdade de Engenharia da Universidade do Porto

View shared research outputs
Top Co-Authors

Avatar

Rui S. Ribeiro

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge