Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian McArdle is active.

Publication


Featured researches published by Adrian McArdle.


Journal of Dental Research | 2014

Biomaterials for Craniofacial Bone Engineering

Ruth Tevlin; Adrian McArdle; David Atashroo; Graham G. Walmsley; Kshemendra Senarath-Yapa; Elizabeth R. Zielins; Kevin J. Paik; Michael T. Longaker; Derrick C. Wan

Conditions such as congenital anomalies, cancers, and trauma can all result in devastating deficits of bone in the craniofacial skeleton. This can lead to significant alteration in function and appearance that may have significant implications for patients. In addition, large bone defects in this area can pose serious clinical dilemmas, which prove difficult to remedy, even with current gold standard surgical treatments. The craniofacial skeleton is complex and serves important functional demands. The necessity to develop new approaches for craniofacial reconstruction arises from the fact that traditional therapeutic modalities, such as autologous bone grafting, present myriad limitations and carry with them the potential for significant complications. While the optimal bone construct for tissue regeneration remains to be elucidated, much progress has been made in the past decade. Advances in tissue engineering have led to innovative scaffold design, complemented by progress in the understanding of stem cell–based therapy and growth factor enhancement of the healing cascade. This review focuses on the role of biomaterials for craniofacial bone engineering, highlighting key advances in scaffold design and development.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Nanotechnology in bone tissue engineering

Graham G. Walmsley; Adrian McArdle; Ruth Tevlin; Arash Momeni; David Atashroo; Michael S. Hu; Abdullah H. Feroze; Victor W. Wong; Peter Lorenz; Michael T. Longaker; Derrick C. Wan

UNLABELLED Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. FROM THE CLINICAL EDITOR Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field.


Plastic and Reconstructive Surgery | 2015

Scarless wound healing: chasing the holy grail.

Graham G. Walmsley; Zeshaan N. Maan; Victor W. Wong; Dominik Duscher; Michael S. Hu; Elizabeth R. Zielins; Taylor Wearda; Ethan Muhonen; Adrian McArdle; Ruth Tevlin; David Atashroo; Kshemendra Senarath-Yapa; H. Peter Lorenz; Geoffrey C. Gurtner; Michael T. Longaker

Summary: Over 100 million patients acquire scars in the industrialized world each year, primarily as a result of elective operations. Although undefined, the global incidence of scarring is even larger, extending to significant numbers of burn and other trauma-related wounds. Scars have the potential to exert a profound psychological and physical impact on the individual. Beyond aesthetic considerations and potential disfigurement, scarring can result in restriction of movement and reduced quality of life. The formation of a scar following skin injury is a consequence of wound healing occurring through reparative rather than regenerative mechanisms. In this article, the authors review the basic stages of wound healing; differences between adult and fetal wound healing; various mechanical, genetic, and pharmacologic strategies to reduce scarring; and the biology of skin stem/progenitor cells that may hold the key to scarless regeneration.


Annals of Biomedical Engineering | 2014

Tissue Engineering and Regenerative Repair in Wound Healing

Michael S. Hu; Zeshaan N. Maan; Jen-Chieh Wu; Robert C. Rennert; Wan Xing Hong; Tiffany S. Lai; Alexander T. M. Cheung; Graham G. Walmsley; Michael T. Chung; Adrian McArdle; Michael T. Longaker; H. Peter Lorenz

Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration.


Stem Cells Translational Medicine | 2013

Isolation of Human Adipose-Derived Stromal Cells Using Laser-Assisted Liposuction and Their Therapeutic Potential in Regenerative Medicine

Michael T. Chung; Andrew Zimmermann; Kevin J. Paik; Shane D. Morrison; Jeong S. Hyun; David Lo; Adrian McArdle; Daniel T. Montoro; Graham G. Walmsley; Kshemendra Senarath-Yapa; Michael Sorkin; Robert C. Rennert; Hsin-Han Chen; As Chung; Dean Vistnes; Geoffrey C. Gurtner; Michael T. Longaker; Derrick C. Wan

Harvesting adipose‐derived stromal cells (ASCs) for tissue engineering is frequently done through liposuction. However, several different techniques exist. Although third‐generation ultrasound‐assisted liposuction has been shown to not have a negative effect on ASCs, the impact of laser‐assisted liposuction on the quality and differentiation potential of ASCs has not been studied. Therefore, ASCs were harvested from laser‐assisted lipoaspirate and suction‐assisted lipoaspirate. Next, in vitro parameters of cell yield, cell viability and proliferation, surface marker phenotype, osteogenic differentiation, and adipogenic differentiation were performed. Finally, in vivo bone formation was assessed using a critical‐sized cranial defect in athymic nude mice. Although ASCs isolated from suction‐assisted lipoaspirate and laser‐assisted lipoaspirate both successfully underwent osteogenic and adipogenic differentiation, the cell yield, viability, proliferation, and frequency of ASCs (CD34+CD31−CD45−) in the stromal vascular fraction were all significantly less with laser‐assisted liposuction in vitro (p < .05). In vivo, quantification of osseous healing by micro‐computed tomography revealed significantly more healing with ASCs isolated from suction‐assisted lipoaspirate relative to laser‐assisted lipoaspirate at the 4‐, 6‐, and 8‐week time points (p < .05). Therefore, as laser‐assisted liposuction appears to negatively impact the biology of ASCs, cell harvest using suction‐assisted liposuction is preferable for tissue‐engineering purposes.


Regenerative Medicine | 2014

Wound healing: an update

Elizabeth R. Zielins; David Atashroo; Zeshaan N. Maan; Dominik Duscher; Graham G. Walmsley; Michael Hu; Kshemendra Senarath-Yapa; Adrian McArdle; Ruth Tevlin; Taylor Wearda; Kevin J. Paik; Christopher Duldulao; Wan Xing Hong; Geoffrey C. Gurtner; Michael T. Longaker

Wounds, both chronic and acute, continue to be a tremendous socioeconomic burden. As such, technologies drawn from many disciplines within science and engineering are constantly being incorporated into innovative wound healing therapies. While many of these therapies are experimental, they have resulted in new insights into the pathophysiology of wound healing, and in turn the development of more specialized treatments for both normal and abnormal wound healing states. Herein, we review some of the emerging technologies that are currently being developed to aid and improve wound healing after cutaneous injury.


Organogenesis | 2012

Craniosynostosis: molecular pathways and future pharmacologic therapy.

Kshemendra Senarath-Yapa; Michael T. Chung; Adrian McArdle; Victor W. Wong; Michael T. Longaker; Derrick C. Wan

Craniosynostosis describes the premature fusion of one or more cranial sutures and can lead to dramatic manifestations in terms of appearance and functional impairment. Contemporary approaches for this condition are primarily surgical and are associated with considerable morbidity and mortality. The additional post-operative problems of suture refusion and bony relapse may also necessitate repeated surgeries with their own attendant risks. Therefore, a need exists to not only optimize current strategies but also to develop novel biological therapies which could obviate the need for surgery and potentially treat or even prevent premature suture fusion. Clinical studies of patients with syndromic craniosynostosis have provided some useful insights into the important signaling pathways and molecular events guiding suture fate. Furthermore, the highly conserved nature of craniofacial development between humans and other species have permitted more focused and step-wise elucidation of the molecular underpinnings of craniosynostosis. This review will describe the clinical manifestations of craniosynostosis, reflect on our understanding of syndromic and non-syndromic craniosynostoses and outline the different approaches that have been adopted in our laboratory and elsewhere to better understand the pathogenesis of premature suture fusion. Finally, we will assess to what extent our improved understanding of the pathogenesis of craniosynostosis, achieved through laboratory-based and clinical studies, have made the possibility of a non-surgical pharmacological approach both realistic and tangible.Craniosynostosis describes the premature fusion of one or more cranial sutures and can lead to dramatic manifestations in terms of appearance and functional impairment. Contemporary approaches for this condition are primarily surgical and are associated with considerable morbidity and mortality. The additional post-operative problems of suture refusion and bony relapse may also necessitate repeated surgeries with their own attendant risks. Therefore, a need exists to not only optimize current strategies but also to develop novel biological therapies which could obviate the need for surgery and potentially treat or even prevent premature suture fusion. Clinical studies of patients with syndromic craniosynostosis have provided some useful insights into the important signaling pathways and molecular events guiding suture fate. Furthermore, the highly conserved nature of craniofacial development between humans and other species have permitted more focused and step-wise elucidation of the molecular underpinnings of craniosynostosis. This review will describe the clinical manifestations of craniosynostosis, reflect on our understanding of syndromic and non-syndromic craniosynostoses and outline the different approaches that have been adopted in our laboratory and elsewhere to better understand the pathogenesis of premature suture fusion. Finally, we will assess to what extent our improved understanding of the pathogenesis of craniosynostosis, achieved through laboratory-based and clinical studies, have made the possibility of a non-surgical pharmacological approach both realistic and tangible.


Plastic and Reconstructive Surgery | 2014

Studies in fat grafting: Part I. Effects of injection technique on in vitro fat viability and in vivo volume retention.

Michael T. Chung; Kevin J. Paik; David Atashroo; Jeong S. Hyun; Adrian McArdle; Kshemendra Senarath-Yapa; Elizabeth R. Zielins; Ruth Tevlin; Chris Duldulao; Michael S. Hu; Graham G. Walmsley; Andreina Parisi-Amon; Arash Momeni; Joe R. Rimsa; George W. Commons; Geoffrey C. Gurtner; Derrick C. Wan; Michael T. Longaker

Background: Fat grafting has become increasingly popular for the correction of soft-tissue deficits at many sites throughout the body. Long-term outcomes, however, depend on delivery of fat in the least traumatic fashion to optimize viability of the transplanted tissue. In this study, the authors compare the biological properties of fat following injection using two methods. Methods: Lipoaspiration samples were obtained from five female donors, and cellular viability, proliferation, and lipolysis were evaluated following injection using either a modified Coleman technique or an automated, low-shear device. Comparisons were made to minimally processed, uninjected fat. Volume retention was also measured over 12 weeks after injection of fat under the scalp of immunodeficient mice using either the modified Coleman technique or the Adipose Tissue Injector. Finally, fat grafts were analyzed histologically. Results: Fat viability and cellular proliferation were both significantly greater with the Adipose Tissue Injector relative to injection with the modified Coleman technique. In contrast, significantly less lipolysis was noted using the automated device. In vivo fat volume retention was significantly greater than with the modified Coleman technique at the 4-, 6-, 8-, and 12-week time points. This corresponded to significantly greater histologic scores for healthy fat and lower scores for injury following injection with the device. Conclusion: Biological properties of injected tissues reflect how disruptive and harmful techniques for placement of fat may be, and the authors’ in vitro and in vivo data both support the use of the automated, low-shear devices compared with the modified Coleman technique.


Plastic and Reconstructive Surgery | 2014

The role of stem cells in aesthetic surgery: fact or fiction?

Adrian McArdle; Kshemendra Senarath-Yapa; Graham G. Walmsley; Michael Hu; David Atashroo; Ruth Tevlin; Elizabeth R. Zielins; Geoffrey C. Gurtner; Derrick C. Wan; Michael T. Longaker

Background: Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. Methods: The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration–approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a “snapshot” analysis of Web sites using the search terms “stem cell therapy” or “stem cell treatment” or “stem cell facelift” was performed. Results: Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Conclusions: Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell–based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Identification and characterization of an injury-induced skeletal progenitor.

Owen Marecic; Ruth Tevlin; Adrian McArdle; Eun Young Seo; Taylor Wearda; Christopher Duldulao; Graham G. Walmsley; Allison Nguyen; Irving L. Weissman; Charles K. Chan; Michael T. Longaker

Significance Here, we characterize the injury-induced activation of a specific, highly purified population of multipotent skeletal progenitor cells. These activated progenitors show increased cell frequency, increased viability, and enhanced osteogenic potential. They also possess a unique transcriptional profile that distinguishes them from progenitors found in uninjured bone. We report that these features improve regenerative capacity, suggesting that activated progenitors play a principal role in bone healing. We hope that a better understanding of stem and progenitor activation will inspire novel therapies that restore impaired skeletal regeneration. The postnatal skeleton undergoes growth, remodeling, and repair. We hypothesized that skeletal progenitor cells active during these disparate phases are genetically and phenotypically distinct. We identified a highly potent regenerative cell type that we term the fracture-induced bone, cartilage, stromal progenitor (f-BCSP) in the fracture callus of adult mice. The f-BCSP possesses significantly enhanced skeletogenic potential compared with BCSPs harvested from uninjured bone. It also recapitulates many gene expression patterns involved in perinatal skeletogenesis. Our results indicate that the skeletal progenitor population is functionally stratified, containing distinct subsets responsible for growth, regeneration, and repair. Furthermore, our findings suggest that injury-induced changes to the skeletal stem and progenitor microenvironments could activate these cells and enhance their regenerative potential.

Collaboration


Dive into the Adrian McArdle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge