Adrian R. Rennie
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adrian R. Rennie.
Journal of Colloid and Interface Science | 2009
S. Junaid S. Qazi; Adrian R. Rennie; Jeremy K. Cockcroft; Martin Vickers
Laboratory X-ray diffraction is used to investigate the size and shape of dispersed plate-like and spherical colloidal particles. Analysis of the wide-angle diffraction data provides information about the size and shape of crystals from the width of the Bragg peaks according to the Debye-Scherrer formula. The measurements, data analysis, and evaluation are discussed. It is shown that X-ray diffraction with conventional laboratory equipment on dispersed particles is feasible as a tool to determine both particle size and shape. Data for two samples--gold colloids and nickel (II) hydroxide particles are presented. The advantages and limitations of the method are discussed. X-ray diffraction measurements that are made in combination with dynamic light scattering can be used to estimate the thickness of stabilizing layers of polymers.
Biochimica et Biophysica Acta | 2008
Anna Lundquist; Per Wessman; Adrian R. Rennie; Katarina Edwards
Comparison of melittin interaction with liposomes, bilayer disks and micelles showed that melittin binding to lipid aggregates is largely dictated by the amount of highly curved areas in the aggregates. The PEG-stabilised bilayer disks were characterised by a combination of small angle neutron scattering, cryo-transmission electron microscopy and dynamic light scattering. Importantly, the theoretically foreseen partial segregation of the lipid components, important for maintaining the structure of the bilayer disk, was confirmed. Steady state fluorescence spectroscopy indicated that melittin mainly resides at the rim of the bilayer disks. Results of the present study help increase the understanding of the mechanisms behind, and the physico-chemical factors affecting, melittin-lipid interaction. We suggest that bilayer disks, due to their stable structure, constitute interesting vehicles for transport of peptides that have high propensity to associate with lipid surfaces of high curvature.
Journal of Physical Chemistry B | 2010
Marie-Louise Ainalem; Richard A. Campbell; Syma Khalid; Richard J. Gillams; Adrian R. Rennie; Tommy Nylander
Poly(amido amine) (PAMAM) dendrimers have previously been shown, as cationic condensing agents of DNA, to have high potential for nonviral gene delivery. This study addresses two key issues for gene delivery: the interaction of the biomembrane with (i) the condensing agent (the cationic PAMAM dendrimer) and (ii) the corresponding dendrimer/DNA aggregate. Using in situ null ellipsometry and neutron reflection, parallel experiments were carried out involving dendrimers of generations 2 (G2), 4 (G4), and 6 (G6). The study demonstrates that free dendrimers of all three generations were able to traverse supported palmitoyloleoylphosphatidylcholine (POPC) bilayers deposited on silica surfaces. The model biomembranes were elevated from the solid surfaces upon dendrimer penetration, which offers a promising new way to generate more realistic model biomembranes where the contact with the supporting surface is reduced and where aqueous cavities are present beneath the bilayer. The largest dendrimer (G6) induced partial bilayer destruction directly upon penetration, whereas the smaller dendrimers (G2 and G4) leave the bilayer intact, so we propose that lower generation dendrimers have greater potential as transfection mediators. In addition to the experimental observations, coarse-grained simulations on the interaction between generation 3 (G3) dendrimers and POPC bilayers were performed in the absence and presence of a bilayer-supporting negatively charged surface that emulates the support. The simulations demonstrate that G3 is transported across free-standing POPC bilayers by direct penetration and not by endocytosis. The penetrability was, however, reduced in the presence of a surface, indicating that the membrane transport observed experimentally was not driven solely by the surface. The experimental reflection techniques were also applied to dendrimer/DNA aggregates of charge ratio = 0.5, and while G2/DNA and G4/DNA aggregates interact with POPC bilayers, G6/DNA displays no such interaction. These results indicate that, in contrast to free dendrimer molecules, dendrimer/DNA aggregates of low charge ratios are not able to traverse a membrane by direct penetration.
Langmuir | 2009
Peter Linton; Adrian R. Rennie; Malin Zackrisson; Viveka Alfredsson
We report on the mechanism of growth of mesoporous silica (SBA-15, plane group p6m). In situ studies of the formation using ultrasmall angle X-ray scattering (USAXS) and small-angle X-ray scattering (SAXS) covering length scales from 5 to 10,000 A, complemented with UV-vis and transmission electron microscopy (TEM), provide unique data on particle growth coupled with information regarding the progression of the mesostructure formation and the micellar evolution.
Journal of Rheology | 2000
A. B. D. Brown; Stuart M. Clarke; P. Convert; Adrian R. Rennie
The orientational order in concentrated dispersions of plate-like, kaolinite particles subjected to shear has been studied using neutron diffraction. The relationship between the direction of orientation and the extent of alignment, calculated as an order parameter, is similar to that predicted for dilute dispersions. The plate-like particles align with their normals in the compressional direction. As the shear rate is increased, the degree of order increases and the particles align with normals closer to the gradient direction. However, the degree of order observed at a particular shear rate was found to vary with concentration in a complex manner. At intermediate concentrations, the extent of order is enhanced by the particle interactions. In contrast, at high concentrations the extent of order is reduced. An explanation for this effect is suggested in terms of an effective temperature arising from particle interactions and collisions.
Journal of Chemical Physics | 2003
Diego Pontoni; S. Finet; Theyencheri Narayanan; Adrian R. Rennie
The evolution of microstructure and dynamics of a colloidal suspension transforming from hard-sphere to sticky hard-sphere system is investigated by small-angle x-ray scattering techniques. The colloidal system comprised of sterically stabilized silica particles suspended in a marginal solvent. The repulsive to attractive transition was realized by varying the temperature. While the particle form factor showed few changes, the structure factor of interparticle interactions exhibited liquidlike features in the attractive phase. The measured structure factors up to a gelation transition can be adequately described by the square-well model of short-ranged attractive fluids. The particle dynamics showed a continuous change from single to stretched exponential decay as the system transformed from repulsive to attractive behavior. A complete jamming of the particle dynamics was observed when the depth of attractive well attained several kBT. Although, static and dynamic behavior are reversible with respect to t...
Biopolymers | 2012
Habauka M. Kwaambwa; Adrian R. Rennie
Protein extracted from Moringa oleifera (MO) seeds has been advocated as a cheap and environmental friendly alternative to ionic flocculants for water purification. However, the nature and mechanism of its interaction with particles in water, as well as with dissolved surface-active molecules, are not well understood. In this article, we report studies of the protein and its interaction with four surfactants using dynamic light scattering (DLS), zeta-potential and turbidity measurements. Zeta-potential measurements identified points of charge reversal and the turbidity and DLS measurements were used to characterize the microstructure and size of protein-surfactant complexes. From the points of charge reversal, it was estimated that 7 anions are required to neutralize the positive charges of each protein molecule at pH 7. For protein mixtures with sodium dodecyl sulfate and dodecyl di-acid sodium salt, the peak in turbidity corresponds to concentrations with a large change in zeta-potential. No turbidity was observed for protein mixtures with either the nonionic surfactant Triton X-100 or the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate. Changes of pH in the range 4-10 have little effect on the zeta-potential, turbidity, and the hydrodynamic radius reflecting the high isoelectric point of the protein. Addition of small amounts of salt has little effect on the size of protein in solution. These results are discussed in the context of the use of the MO protein in water treatment.
Langmuir | 2010
Katherine C. Thompson; Adrian R. Rennie; Martin D. King; Samantha J. O. Hardman; Claire O. M. Lucas; Christian Pfrang; Brian R. Hughes; Arwel V. Hughes
The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.
Physical Chemistry Chemical Physics | 2000
Giovanna Fragneto; T. J. Su; Jian R. Lu; R. K. Thomas; Adrian R. Rennie
The two proteins, β-casein (β-CN) and β-lactoglobulin (β-Lg), were adsorbed on hydrophobic silicon substrates from buffer solutions at pH 8, 7, 5 and 3. The structure, in terms of thickness and composition of the adsorbed species, was determined by means of neutron reflectivity. At pH 7 β-CN forms a structure that is described by two layers, a compact layer adjacent to the solid surface and a looser layer protruding into the solution. β-Lg adsorbs as a uniform layer. At lower pH both proteins adsorb more, with thicker layers, and β-Lg also adsorbs as a non-uniform layer. The adsorption of both proteins is irreversible. The merits of contrast variation are discussed and, in particular, the importance for the systems studied of the use of water of scattering length density 4.5×10−6 A−2 is described. Owing to the large size of the proteins, this contrast, intermediate between those of D2O and silicon, allows details masked by the higher critical angle of D2O to be revealed.
Langmuir | 2013
Katherine C. Thompson; Stephanie H. Jones; Adrian R. Rennie; King; Andrew D. Ward; Brian R. Hughes; Claire O. M. Lucas; Richard A. Campbell; Arwel V. Hughes
The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.