Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian R. West is active.

Publication


Featured researches published by Adrian R. West.


European Respiratory Journal | 2010

Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography

Jonathan P. Williamson; Julian J. Armstrong; Robert A. McLaughlin; Peter B. Noble; Adrian R. West; Sven Becker; Andrea Curatolo; William J. Noffsinger; Howard W. Mitchell; Michael Phillips; David D. Sampson; David R. Hillman; Peter R. Eastwood

Airway dimensions are difficult to quantify bronchoscopically because of optical distortion and a limited ability to gauge depth. Anatomical optical coherence tomography (aOCT), a novel imaging technique, may overcome these limitations. This study evaluated the accuracy of aOCT against existing techniques in phantom, excised pig and in vivo human airways. Three comparative studies were performed: 1) micrometer-derived area measurements in 10 plastic tubes were compared with aOCT-derived area; 2) aOCT-derived airway compliance curves from excised pig airways were compared with curves derived using an endoscopic technique; and 3) airway dimensions from the trachea to subsegmental bronchi were measured using aOCT in four anaesthetised patients during bronchoscopy and compared with computed tomography (CT) measurements. Measurements in plastic tubes revealed aOCT to be accurate and reliable. In pig airways, aOCT-derived compliance measurements compared closely with endoscopic data. In human airways, dimensions measured with aOCT and CT correlated closely. Bland–Altman plots showed that aOCT diameter and area measurements were higher than CT measurements by 7.6% and 15.1%, respectively. Airway measurements using aOCT are accurate, reliable and compare favourably with existing imaging techniques. Using aOCT with conventional bronchoscopy allows real-time measurement of airway dimensions and could be useful clinically in settings where knowledge of airway calibre is required.


Pulmonary Pharmacology & Therapeutics | 2014

Airway smooth muscle in asthma: Linking contraction and mechanotransduction to disease pathogenesis and remodelling

Peter B. Noble; Chris D. Pascoe; Bo Lan; Satoru Ito; Loes E. M. Kistemaker; Amanda L. Tatler; Tonio Pera; Bindi S. Brook; Reinoud Gosens; Adrian R. West

Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.


Journal of Applied Physiology | 2008

Maintenance of airway caliber in isolated airways by deep inspiration and tidal strains

Adam S. LaPrad; Adrian R. West; Peter B. Noble; Kenneth R. Lutchen; Howard W. Mitchell

Deep inspirations (DIs) are large periodic breathing maneuvers that regulate airway caliber and prevent airway obstruction in vivo. This study characterized the intrinsic response of the intact airway to DI, isolated from parenchymal attachments and other in vivo interactions. Porcine isolated bronchial segments were constricted with carbachol and subjected to transmural pressures of 5-10 cmH2O at 0.25 Hz (tidal breathing) interspersed with single DIs of amplitude 5-20 cmH2O, 5-30 cmH2O, or 5-40 cmH2O (6-s duration) or DI of amplitude 5-30 cmH2O (30-s duration). Tidal breathing was ceased after DI in a subset of airways and in control airways in which no DI was performed. Luminal cross-sectional area was measured using a fiber-optic endoscope. Bronchodilation by DI was amplitude dependent; 5-20 cmH2O DIs produced less dilation than 5-30 cmH2O and 5-40 cmH2O DIs (P=0.003 and 0.012, respectively). Effects of DI duration were not significant (P=0.182). Renarrowing after DI followed a monoexponential decay function to pre-DI airway caliber with time constants between 27.4+/-4.3 and 36.3+/-6.9 s. However, when tidal breathing was ceased after DI, further bronchoconstriction occurred within 30s. This response was identical in both the presence and absence of DI (P=0.919). We conclude that the normal bronchodilatory response to DI occurs as a result of the direct mechanical effects of DI on activated ASM in the airway wall. Further bronchoconstriction occurs by altering the airway wall stress following DI, demonstrating the importance of continual transient strains in maintaining airway caliber.


Pulmonary Pharmacology & Therapeutics | 2013

Airway contractility and remodeling : Links to asthma symptoms

Adrian R. West; Harley T. Syyong; Sana Siddiqui; Chris D. Pascoe; Thomas M. Murphy; Harm Maarsingh; Linhong Deng; Geoffrey N. Maksym; Ynuk Bossé

Respiratory symptoms are largely caused by obstruction of the airways. In asthma, airway narrowing mediated by airway smooth muscle (ASM) contraction contributes significantly to obstruction. The spasmogens produced following exposure to environmental triggers, such as viruses or allergens, are initially responsible for ASM activation. However, the extent of narrowing of the airway lumen due to ASM shortening can be influenced by many factors and it remains a real challenge to decipher the exact role of ASM in causing asthmatic symptoms. Innovative tools, such as the forced oscillation technique, continue to develop and have been proven useful to assess some features of ASM function in vivo. Despite these technologic advances, it is still not clear whether excessive narrowing in asthma is driven by ASM abnormalities, by other alterations in non-muscle factors or simply because of the overexpression of spasmogens. This is because a multitude of forces are acting on the airway wall, and because not only are these forces constantly changing but they are also intricately interconnected. To counteract these limitations, investigators have utilized in vitro and ex vivo systems to assess and compare asthmatic and non-asthmatic ASM contractility. This review describes: 1- some muscle and non-muscle factors that are altered in asthma that may lead to airway narrowing and asthma symptoms; 2- some technologies such as the forced oscillation technique that have the potential to unveil the role of ASM in airway narrowing in vivo; and 3- some data from ex vivo and in vitro methods that probe the possibility that airway hyperresponsiveness is due to the altered environment surrounding the ASM or, alternatively, to a hypercontractile ASM phenotype that can be either innate or acquired.


European Respiratory Journal | 2009

Potent bronchodilation and reduced stiffness by relaxant stimuli under dynamic conditions

Thomas K. Ansell; Peter K. McFawn; Peter B. Noble; Adrian R. West; Lynette Fernandes; Howard W. Mitchell

Airway relaxation in response to isoprenaline, sodium nitroprusside (SNP) and electrical field stimulation (EFS) was compared under static and dynamic conditions. The capacity of relaxants to reduce airway stiffness and, thus, potentially contribute to bronchodilation was also investigated. Relaxation responses were recorded in fluid filled bronchial segments from pigs under static conditions and during volume oscillations simulating tidal and twice tidal manoeuvres. Bronchodilation was assessed from the reduction in carbachol-induced lumen pressure, at isovolume points in pressure cycles produced by volume oscillation, and stiffness was assessed from cycle amplitudes. Under static conditions, all three inhibitory stimuli produced partial relaxation of the carbachol-induced contraction. Volume oscillation alone also reduced the contraction in an amplitude-dependent manner. However, maximum relaxation was observed when isoprenaline or SNP were combined with volume oscillation, virtually abolishing contraction at the highest drug concentrations. The proportional effects of isoprenaline and EFS were not different under static or oscillating conditions, whereas relaxation to SNP was slightly greater in oscillating airways. All three inhibitory stimuli also strongly reduced carbachol-induced airway stiffening. The current authors conclude that bronchoconstriction is strongly suppressed by combining the inhibitory stimulation of airway smooth muscle with cyclical mechanical strains. The capacity of airway smooth muscle relaxants to also reduce stiffness may further contribute to bronchodilation.


Journal of Gastroenterology and Hepatology | 2007

Subcellular location of heme oxygenase 1 and 2 and divalent metal transporter 1 in relation to endocytotic markers during heme iron absorption

Adrian R. West; Phillip S. Oates

Background and Aim:  Heme is an important dietary micronutrient, although its absorptive mechanisms are poorly understood. One hypothesis suggests enterocytes take up heme by receptor‐mediated endocytosis (RME) which then undergoes catabolism by heme oxygenase (HO) inside internalized vesicles. This would require the translocation of HO‐1 or HO‐2 to endosomes and/or lysosomes and the presence of a transporter, possibly divalent metal transporter 1 (DMT1), to transfer released iron to the cytoplasm. Currently, the location of HO‐1 and HO‐2 in enterocytes is unknown.


Pulmonary Pharmacology & Therapeutics | 2013

Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro : Implications in understanding asthma

David B. Wright; Pawan Sharma; Min Hyung Ryu; Paul-André Risse; Melanie Ngo; Harm Maarsingh; Cynthia Koziol-White; Aruni Jha; Andrew J. Halayko; Adrian R. West

Asthma is a chronic obstructive airway disease characterised by airway hyperresponsiveness (AHR) and airway wall remodelling. The effector of airway narrowing is the contraction of airway smooth muscle (ASM), yet the question of whether an inherent or acquired dysfunction in ASM contractile function plays a significant role in the disease pathophysiology remains contentious. The difficulty in determining the role of ASM lies in limitations with the models used to assess contraction. In vivo models provide a fully integrated physiological response but ASM contraction cannot be directly measured. Ex vivo and in vitro models can provide more direct assessment of ASM contraction but the loss of factors that may modulate ASM responsiveness and AHR, including interaction between multiple cell types and disruption of the mechanical environment, precludes a complete understanding of the disease process. In this review we detail key advantages of common in vivo, ex vivo and in vitro models of ASM contraction, as well as emerging tissue engineered models of ASM and whole airways. We also highlight important findings from each model with respect to the pathophysiology of asthma.


Respirology | 2009

Effects of simulated tidal and deep breathing on immature airway contraction to acetylcholine and nerve stimulation

Thomas K. Ansell; Peter B. Noble; Howard W. Mitchell; Adrian R. West; Lynette Fernandes; Peter K. McFawn

Background and objective:  In adults, respiratory movements, such as tidal and deep breaths, reduce airway smooth muscle force and cause bronchodilation. Evidence suggests that these beneficial effects of oscillatory strain do not occur in children, possibly because of reduced coupling of the airways to lung tissue or maturational differences in the intrinsic response of the airways to oscillatory strain.


american thoracic society international conference | 2012

Airways dilate to simulated inspiratory but not expiratory manoeuvres

Adrian R. West; Elangovan Thaya Needi; Howard W. Mitchell; Peter K. McFawn; Peter B. Noble

In a healthy human, deep inspirations produce bronchodilation of contracted airways, which probably occurs due to the transient distension of the airway smooth muscle (ASM). We hypothesised that deep expiratory manoeuvres also produce bronchodilation due to transient airway wall and ASM compression. We used porcine bronchial segments to assess the effects of deep inspirations, and maximal and partial expiration (submaximal) on airway calibre. Respiratory manoeuvres were simulated by varying transmural pressure using a hydrostatic pressure column: deep inspiration 5 to 30 cmH2O, maximal expiration 30 to -15 cmH2O, partial expiration 10 to -15 cmH2O; amidst a background of tidal oscillations, 5 to 10 cmH2O at 0.25 Hz. Changes in luminal cross-sectional area in carbachol-contracted airways were measured using video endoscopy. Deep inspirations produce an immediate bronchodilation (∼40–60%, p=0.0076) that lasts for up to 1 min (p=0.0479). In comparison, after maximal expiration there was no immediate change in airway calibre; however, a delayed bronchodilatory response was observed from 4 s after the manoeuvre (p=0.0059) and persisted for up to 3 min (p=0.0182). Partial expiration had little or no effect or airway calibre. The results observed demonstrate that the airway wall dilates to deep inspiration manoeuvres but is unresponsive to deep expiratory manoeuvres.


Pulmonary Pharmacology & Therapeutics | 2009

Airway mechanics and methods used to visualize smooth muscle dynamics in vitro

Philip R. Cooper; Brent E. McParland; Howard W. Mitchell; Peter B. Noble; A.Z. Politi; A.R. Ressmeyer; Adrian R. West

Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.

Collaboration


Dive into the Adrian R. West's collaboration.

Top Co-Authors

Avatar

Peter B. Noble

Telethon Institute for Child Health Research

View shared research outputs
Top Co-Authors

Avatar

Howard W. Mitchell

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

David R. Hillman

Sir Charles Gairdner Hospital

View shared research outputs
Top Co-Authors

Avatar

Julian J. Armstrong

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Peter K. McFawn

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Peter R. Eastwood

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Becker

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge