Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Recinos is active.

Publication


Featured researches published by Adrian Recinos.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2002

Vascular Inflammation and the Renin-Angiotensin System

Allan R. Brasier; Adrian Recinos; Mohsen S. Eledrisi

It is now well established that vascular inflammation is an independent risk factor for the development of atherosclerosis. In otherwise healthy patients, chronic elevations of circulating interleukin-6 or its biomarkers are predictors for increased risk in the development and progression of ischemic heart disease. Although multifactorial in etiology, vascular inflammation produces atherosclerosis by the continuous recruitment of circulating monocytes into the vessel wall and by contributing to an oxidant-rich inflammatory milieu that induces phenotypic changes in resident (noninflammatory) cells. In addition, the renin-angiotensin system (RAS) has important modulatory activities in the atherogenic process. Recent work has shown that angiotensin II (Ang II) has significant proinflammatory actions in the vascular wall, inducing the production of reactive oxygen species, inflammatory cytokines, and adhesion molecules. These latter effects on gene expression are mediated, at least in part, through the cytoplasmic nuclear factor-kappaB transcription factor. Through these actions, Ang II augments vascular inflammation, induces endothelial dysfunction, and, in so doing, enhances the atherogenic process. Our recent studies have defined a molecular mechanism for a biological positive-feedback loop that explains how vascular inflammation can be self-sustaining through upregulation of the vessel wall Ang II tone. Ang II produced locally by the inflamed vessel induces the synthesis and secretion of interleukin-6, a cytokine that induces synthesis of angiotensinogen in the liver through a janus kinase (JAK)/signal transducer and activator of transcription (STAT)-3 pathway. Enhanced angiotensinogen production, in turn, supplies more substrate to the activated vascular RAS, where locally produced Ang II synergizes with oxidized lipid to perpetuate atherosclerotic vascular inflammation. These observations suggest that one mechanism by which RAS antagonists prevent atherosclerosis is by reducing vascular inflammation. Moreover, antagonizing the vascular nuclear factor-kappaB and/or hepatic JAK/STAT pathways may modulate the atherosclerotic process.


Journal of Clinical Investigation | 2009

An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice

Brian C. Tieu; Chang Lee; Hong Sun; Wanda S. LeJeune; Adrian Recinos; Xiaoxi Ju; Heidi Spratt; Dong Chuan Guo; Dianna M. Milewicz; Ronald G. Tilton; Allan R. Brasier

Vascular inflammation contributes to cardiovascular diseases such as aortic aneurysm and dissection. However, the precise inflammatory pathways involved have not been clearly defined. We have shown here that subcutaneous infusion of Ang II, a vasopressor known to promote vascular inflammation, into older C57BL/6J mice induced aortic production of the proinflammatory cytokine IL-6 and the monocyte chemoattractant MCP-1. Production of these factors occurred predominantly in the tunica adventitia, along with macrophage recruitment, adventitial expansion, and development of thoracic and suprarenal aortic dissections. In contrast, a reduced incidence of dissections was observed after Ang II infusion into mice lacking either IL-6 or the MCP-1 receptor CCR2. Further analysis revealed that Ang II induced CCR2+CD14hiCD11bhiF4/80- macrophage accumulation selectively in aortic dissections and not in aortas from Il6-/- mice. Adoptive transfer of Ccr2+/+ monocytes into Ccr2-/- mice resulted in selective monocyte uptake into the ascending and suprarenal aorta in regions of enhanced ROS stress, with restoration of IL-6 secretion and increased incidence of dissection. In vitro, coculture of monocytes and aortic adventitial fibroblasts produced MCP-1- and IL-6-enriched conditioned medium that promoted differentiation of monocytes into macrophages, induced CD14 and CD11b upregulation, and induced MCP-1 and MMP-9 expression. These results suggest that leukocyte-fibroblast interactions in the aortic adventitia potentiate IL-6 production, inducing local monocyte recruitment and activation, thereby promoting MCP-1 secretion, vascular inflammation, ECM remodeling, and aortic destabilization.


Circulation Research | 2006

RhoA Mediates Angiotensin II–Induced Phospho-Ser536 Nuclear Factor κB/RelA Subunit Exchange on the Interleukin-6 Promoter in VSMCs

Ruwen Cui; Brian C. Tieu; Adrian Recinos; Ronald G. Tilton; Allan R. Brasier

The vasoconstrictor angiotensin II (Ang II) accelerates atherosclerosis by inducing vascular gene expression programs, producing monocyte recruitment, and vascular remodeling. In vascular smooth muscle cells (VSMCs), Ang II signaling activates interleukin (IL)-6 expression, a cytokine producing acute-phase inflammation, mediated by the transcription factor nuclear factor &kgr;B (NF-&kgr;B). The classical NF-&kgr;B activation pathway involves cytoplasmic-to-nuclear translocation of the potent RelA transactivating subunit; however, because nuclear RelA is present in VSMCs, the mechanism by which NF-&kgr;B activity is controlled is incompletely understood. In this study, we focus on early activation steps controlling RelA activation. Although Ang II only weakly induces ≈1.5-fold RelA nuclear translocation, RelA is nevertheless required because short interfering RNA–mediated RelA knockdown inhibits inducible IL-6 expression. We find instead that Ang II stimulation rapidly induces RelA phosphorylation at serine residue 536, a critical regulatory site in its transactivating domain. Chromatin immunoprecipitation assays indicate no significant changes in total RelA binding to the native IL-6 promoter, but an apparent increase in fractional binding of phospho-Ser536 RelA. Inactivation of RhoA by treatment with Clostridium botulinum exoenzyme C3 exotoxin or expression of dominant negative RhoA blocks Ang II–inducible RelA Ser536 phosphorylation and IL-6 expression. Finally, enhanced phospho-Ser536 RelA formation in the aortae of rats chronically infused with Ang II was observed. Together, these data indicate a novel mechanism for Ang II–induced NF-&kgr;B activation in VSMCs, mediated by RhoA-induced phospho-Ser536 RelA formation, IL-6 expression, and vascular inflammation.


Current Cardiology Reviews | 2008

Roles of IL-6-gp130 Signaling in Vascular Inflammation

Tieying Hou; Brian C. Tieu; Sutapa Ray; Adrian Recinos; Ruwen Cui; Ronald G. Tilton; Allan R. Brasier

Interleukin-6 (IL-6) is a well-established, independent indicator of multiple distinct types of cardiovascular disease and all-cause mortality. In this review, we present current understanding of the multiple roles that IL-6 and its signaling pathways through glycoprotein 130 (gp130) play in cardiovascular homeostasis. IL-6 is highly inducible in vascular tissues through the actions of the angiotensin II (Ang II) peptide, where it acts in a paracrine manner to signal through two distinct mechanisms, the first being a classic membrane receptor initiated pathway and the second, a trans-signaling pathway, being able to induce responses even in tissues lacking the IL-6 receptor. Recent advances and new concepts in how its intracellular signaling pathways operate via the Janus kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) are described. IL-6 has diverse actions in multiple cell types of cardiovascular importance, including endothelial cells, monocytes, platelets, hepatocytes and adipocytes. We discuss central roles of IL-6 in endothelial dysfunction, cellular inflammation by affecting monocyte activation/differentiation, cellular cytoprotective functions from reactive oxygen species (ROS) stress, modulation of pro-coagulant state, myocardial growth control, and its implications in metabolic control and insulin resistance. These multiple actions indicate that IL-6 is not merely a passive biomarker, but actively modulates adaptive and pathological responses to cardiovascular stress. Summary: IL-6 is a multifunctional cytokine whose presence in the circulation is linked with diverse types of cardiovascular disease and is an independent risk factor for atherosclerosis. In this review, we examine the mechanisms by which IL-6 signals and its myriad effects in cardiovascular tissues that modulate the manifestations of vascular inflammation.


Journal of Vascular Research | 2011

Aortic Adventitial Fibroblasts Participate in Angiotensin-Induced Vascular Wall Inflammation and Remodeling

Brian C. Tieu; Xiaoxi Ju; Chang Lee; Hong Sun; Wanda S. LeJeune; Adrian Recinos; Allan R. Brasier; Ronald G. Tilton

Background/Aims: The role of adventitial fibroblasts in the vascular inflammation observed in the adventitia of large vessels in numerous cardiovascular diseases remains unclear. Our objective was to explore the contribution of these cells to angiotensin II (Ang II)-induced aortic inflammation and adventitial expansion. Methods: Cytokine production by primary human aortic adventitial fibroblasts (AoAF) in tissue culture was detected using multiplex ELISA, and increases in cytokine mRNA following Ang II stimulation were quantitated by real-time PCR. The ability of AoAF-derived MCP-1 to attract monocytes was studied in vitro using Boyden assays, and the resulting effect of the monocyte-AoAF interaction on fibroblast proliferation was measured in vitro using proliferation and 3H-thymidine incorporation assays. Ang II-induced fibroblast proliferation was measured in vivo using aortic digestion of single cells followed by flow cytometric quantification of fibroblast numbers as well as fibroblast and PCNA immunostaining. The ability of monocytes to induce AoAF proliferation was demonstrated in vivo using CCR2+/+ wild-type monocyte adoptive transfer into Ang II-stimulated CCR2-null mice which can produce MCP-1 but have cells lacking the MCP-1 receptor – CCR2. Results: AoAF constitutively secreted numerous proinflammatory cytokines, particularly IL-6 and MCP-1, whose gene expressions were further upregulated in response to Ang II stimulation. AoAF-derived MCP-1 was potent in recruiting THP-1 monocytes in vitro, and these monocytes stimulated AoAF proliferation based on a flow cytometric assessment of cell number and 3H-thymidine incorporation in tissue culture. In vivo, Ang II induced fibroblast proliferation, increased fibroblast and PCNA adventitial staining, and blunted inflammatory responses in the CCR2–/– background. Injection of CCR2+/+ monocytes into Ang II-treated CCR2–/– mice restored adventitial thickening which resulted in increased fibrosis secondary to adventitial fibroblast proliferation. Conclusions: Our results suggest that Ang II-stimulates AoAF to recruit monocytes via fibroblast-derived MCP-1, and the recruited monocytes further activate fibroblast proliferation, adventitial thickening, and additional cytokine production. This fibroblast-monocyte amplification loop may critically mediate hallmarks of adventitial inflammation common to many cardiovascular diseases.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Interleukin-6–Signal Transducer and Activator of Transcription-3 Signaling Mediates Aortic Dissections Induced by Angiotensin II via the T-Helper Lymphocyte 17–Interleukin 17 Axis in C57BL/6 Mice

Xiaoxi Ju; Talha Ijaz; Hong Sun; Sutapa Ray; Wanda S. LeJeune; Chang Lee; Adrian Recinos; Dong Chuan Guo; Dianna M. Milewicz; Ronald G. Tilton; Allan R. Brasier

Objective—Dysregulated angiotensin II (Ang II) signaling induces local vascular interleukin-6 (IL-6) secretion, producing leukocyte infiltration and life-threatening aortic dissections. Precise mechanisms by which IL-6 signaling induces leukocyte recruitment remain unknown. T-helper 17 lymphocytes (Th17) have been implicated in vascular pathology, but their role in the development of aortic dissections is poorly understood. Here, we tested the relationship of IL-6–signal transducer and activator of transcription-3 signaling with Th17-induced inflammation in the formation of Ang II–induced dissections in C57BL/6 mice. Approach and Results—Ang II infusion induced aortic dissections and CD4+-interleukin 17A (IL-17A)–expressing Th17 cell accumulation in C57BL/6 mice. A blunted local Th17 activation, macrophage recruitment, and reduced incidence of aortic dissections were seen in IL-6−/− mice. To determine the pathological roles of Th17 lymphocytes, we treated Ang II–infused mice with IL-17A–neutralizing antibody or infused Ang II in genetically deficient IL-17A mice and found decreased aortic chemokine monocytic chemotactic protein-1 production and macrophage recruitment, leading to a reduction in aortic dissections. This effect was independent of blood pressure in IL-17A–neutralizing antibody experiment. Application of a cell-permeable signal transducer and activator of transcription-3 inhibitor to downregulate the IL-6 pathway decreased aortic dilation and Th17 cell recruitment. We also observed increased aortic Th17 infiltration and IL-17 mRNA expression in patients with thoracic aortic dissections. Finally, we found that Ang II–mediated aortic dissections occurred independent of blood pressure changes. Conclusions—Our results indicate that the IL-6–signal transducer and activator of transcription-3 signaling pathway converges on Th17 recruitment and IL-17A signaling upstream of macrophage recruitment, mediating aortic dissections.


Clinical and Translational Science | 2012

Discovery Proteomics and Nonparametric Modeling Pipeline in the Development of a Candidate Biomarker Panel for Dengue Hemorrhagic Fever

Allan R. Brasier; Josefina Garcia; John E. Wiktorowicz; Heidi Spratt; Guillermo Comach; Hyunsu Ju; Adrian Recinos; Kizhake V. Soman; Brett M. Forshey; Eric S. Halsey; Patrick J. Blair; Claudio Rocha; Isabel Bazan; Sundar Victor; Zheng Wu; Susan Stafford; Douglas M. Watts; Amy C. Morrison; Thomas W. Scott; Tadeusz J. Kochel

Secondary dengue viral infection can produce capillary leakage associated with increased mortality known as dengue hemorrhagic fever (DHF). Because the mortality of DHF can be reduced by early detection and intensive support, improved methods for its detection are needed. We applied multidimensional protein profiling to predict outcomes in a prospective dengue surveillance study in South America. Plasma samples taken from initial clinical presentation of acute dengue infection were subjected to proteomics analyses using ELISA and a recently developed biofluid analysis platform. Demographics, clinical laboratory measurements, nine cytokines, and 419 plasma proteins collected at the time of initial presentation were compared between the DF and DHF outcomes. Here, the subjects gender, clinical parameters, two cytokines, and 42 proteins discriminated between the outcomes. These factors were reduced by multivariate adaptive regression splines (MARS) that a highly accurate classification model based on eight discriminant features with an area under the receiver operator curve (AUC) of 0.999. Model analysis indicated that the feature–outcome relationship were nonlinear. Although this DHF risk model will need validation in a larger cohort, we conclude that approaches to develop predictive biomarker models for disease outcome will need to incorporate nonparametric modeling approaches. Clin Trans Sci 2012; Volume #: 1–13


Journal of the American Heart Association | 2014

IL-6 Regulates Extracellular Matrix Remodeling Associated With Aortic Dilation in a Fibrillin-1 Hypomorphic mgR/mgR Mouse Model of Severe Marfan Syndrome

Xiaoxi Ju; Talha Ijaz; Hong Sun; Wanda S. LeJeune; Gracie Vargas; Tuya Shilagard; Adrian Recinos; Dianna M. Milewicz; Allan R. Brasier; Ronald G. Tilton

Background Development of thoracic aortic aneurysms is the most significant clinical phenotype in patients with Marfan syndrome. An inflammatory response has been described in advanced stages of the disease. Because the hallmark of vascular inflammation is local interleukin‐6 (IL‐6) secretion, we explored the role of this proinflammatory cytokine in the formation of aortic aneurysms and rupture in hypomorphic fibrillin‐deficient mice (mgR/mgR). Methods and Results MgR/mgR mice developed ascending aortic aneurysms with significant dilation of the ascending aorta by 12 weeks (2.7±0.1 and 1.3±0.1 for mgR/mgR versus wild‐type mice, respectively; P<0.001). IL‐6 signaling was increased in mgR/mgR aortas measured by increases in IL‐6 and SOCS3 mRNA transcripts (P<0.05) and in cytokine secretion of IL‐6, MCP‐1, and GM‐CSF (P<0.05). To investigate the role of IL‐6 signaling, we generated mgR homozygous mice with IL‐6 deficiency (DKO). The extracellular matrix of mgR/mgR mice showed significant disruption of elastin and the presence of dysregulated collagen deposition in the medial‐adventitial border by second harmonic generation multiphoton autofluorescence microscopy. DKO mice exhibited less elastin and collagen degeneration than mgR/mgR mice, which was associated with decreased activity of matrix metalloproteinase‐9 and had significantly reduced aortic dilation (1.0±0.1 versus 1.6±0.2 mm change from baseline, DKO versus mgR/mgR, P<0.05) that did not affect rupture and survival. Conclusion Activation of IL‐6‐STAT3 signaling contributes to aneurysmal dilation in mgR/mgR mice through increased MMP‐9 activity, aggravating extracellular matrix degradation.


Journal of Clinical Virology | 2015

Molecular classification of outcomes from dengue virus -3 infections

Allan R. Brasier; Yingxin Zhao; John E. Wiktorowicz; Heidi Spratt; Eduardo J. M. Nascimento; Marli Tenório Cordeiro; Kizhake V. Soman; Hyunsu Ju; Adrian Recinos; Susan Stafford; Zheng Wu; Ernesto T. A. Marques; Nikos Vasilakis

OBJECTIVES Dengue virus (DENV) infection is a significant risk to over a third of the human population that causes a wide spectrum of illness, ranging from sub-clinical disease to intermediate syndrome of vascular complications called dengue fever complicated (DFC) and severe, dengue hemorrhagic fever (DHF). Methods for discriminating outcomes will impact clinical trials and understanding disease pathophysiology. STUDY DESIGN We integrated a proteomics discovery pipeline with a heuristics approach to develop a molecular classifier to identify an intermediate phenotype of DENV-3 infectious outcome. RESULTS 121 differentially expressed proteins were identified in plasma from DHF vs dengue fever (DF), and informative candidates were selected using nonparametric statistics. These were combined with markers that measure complement activation, acute phase response, cellular leak, granulocyte differentiation and viral load. From this, we applied quantitative proteomics to select a 15 member panel of proteins that accurately predicted DF, DHF, and DFC using a random forest classifier. The classifier primarily relied on acute phase (A2M), complement (CFD), platelet counts and cellular leak (TPM4) to produce an 86% accuracy of prediction with an area under the receiver operating curve of >0.9 for DHF and DFC vs DF. CONCLUSIONS Integrating discovery and heuristic approaches to sample distinct pathophysiological processes is a powerful approach in infectious disease. Early detection of intermediate outcomes of DENV-3 will speed clinical trials evaluating vaccines or drug interventions.


BMC Developmental Biology | 2016

Generation and characterization of a novel transgenic mouse harboring conditional nuclear factor-kappa B/RelA knockout alleles

Talha Ijaz; Maki Wakamiya; Hong Sun; Adrian Recinos; Ronald G. Tilton; Allan R. Brasier

BackgroundNuclear Factor-Kappa B (NF-kB) is a family of transcription factors that are important in embryonic development, inflammation, epithelial-to-mesenchymal transition and cancer. The 65 kDa RelA subunit is the major transcriptional activator of the NF-kB pathways. Whole-body deficiency of RelA leads to massive apoptosis of liver hepatocytes and death in utero. To study the role of RelA in physiology and in disease states in a manner that circumvents this embryonic lethal phenotype, we have generated a mouse with RelA conditional knockout (CKO) alleles containing loxP sites that are deleted by activated Cre recombinase.ResultsWe demonstrate that RelACKO/CKO mice are fertile, do not display any developmental defects and can be crossed with Cre-expressing mice to delete RelA in a temporal, tissue-specific manner. Our mating of RelACKO/CKO mice with Zp3-Cre transgenic led to embryonic lethality of RelA-deficient embryos. In contrast, mating of RelACKO/CKO mice with Col1α2-CreER mice allowed for the generation of double transgenics which could be stimulated with tamoxifen to induce fibroblast-specific RelA deletion in adulthood.ConclusionsBased on our collective data, we conclude that this novel RelACKO/CKO mouse allows for efficient deletion of RelA in a tissue-specific manner. This RelACKO/CKO mouse will be an invaluable tool for deciphering the mechanistic roles of RelA in various cells and tissues during development and in disease.

Collaboration


Dive into the Adrian Recinos's collaboration.

Top Co-Authors

Avatar

Allan R. Brasier

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ronald G. Tilton

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Hong Sun

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Brian C. Tieu

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Wanda S. LeJeune

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Istvan Boldogh

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Xiaoxi Ju

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Chang Lee

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Dianna M. Milewicz

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Heidi Spratt

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge