Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Roth is active.

Publication


Featured researches published by Adrian Roth.


Toxicology and Applied Pharmacology | 2013

A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity.

Radina Kostadinova; Franziska Boess; Dawn R. Applegate; Laura Suter; Thomas Weiser; Thomas Singer; Brian Naughton; Adrian Roth

Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects.


PLOS ONE | 2016

Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro.

Deborah G. Nguyen; Juergen Funk; Justin Robbins; Candace Crogan-Grundy; Sharon C. Presnell; Thomas Singer; Adrian Roth

Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.


PLOS ONE | 2013

Bioengineered 3D Human Kidney Tissue, a Platform for the Determination of Nephrotoxicity

Teresa M. DesRochers; Laura Suter; Adrian Roth; David L. Kaplan

The staggering cost of bringing a drug to market coupled with the extremely high failure rate of prospective compounds in early phase clinical trials due to unexpected human toxicity makes it imperative that more relevant human models be developed to better predict drug toxicity. Drug–induced nephrotoxicity remains especially difficult to predict in both pre-clinical and clinical settings and is often undetected until patient hospitalization. Current pre-clinical methods of determining renal toxicity include 2D cell cultures and animal models, both of which are incapable of fully recapitulating the in vivo human response to drugs, contributing to the high failure rate upon clinical trials. We have bioengineered a 3D kidney tissue model using immortalized human renal cortical epithelial cells with kidney functions similar to that found in vivo. These 3D tissues were compared to 2D cells in terms of both acute (3 days) and chronic (2 weeks) toxicity induced by Cisplatin, Gentamicin, and Doxorubicin using both traditional LDH secretion and the pre-clinical biomarkers Kim-1 and NGAL as assessments of toxicity. The 3D tissues were more sensitive to drug-induced toxicity and, unlike the 2D cells, were capable of being used to monitor chronic toxicity due to repeat dosing. The inclusion of this tissue model in drug testing prior to the initiation of phase I clinical trials would allow for better prediction of the nephrotoxic effects of new drugs.


Advanced Drug Delivery Reviews | 2014

The application of 3D cell models to support drug safety assessment: Opportunities & challenges☆

Adrian Roth; Thomas Singer

The selection of drug candidates early in development has become increasingly important to minimize the use of animals and to avoid costly failures of drugs later in development. In vitro systems to predict and assess organ toxicity have so far been of limited value due to difficulties in demonstrating in vivo-relevant toxicity at a cell culture level. To overcome the limitations of single-cell type monolayer cultures and short-lived primary cell preparations, researchers have created novel 3-dimensional culture systems which appear to more closely resemble in vivo biology. These could become a key for the pharmaceutical industry in the evaluation of drug candidates. However, the value and acceptance of those new models in standard drug safety applications have yet to be demonstrated. This review aims to provide an overview of the different approaches undertaken in the field of pre-clinical safety assessment, organ toxicity, in particular, with an emphasis on examples and technical challenges.


Toxicology in Vitro | 2013

A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects.

Stefan Kustermann; Franziska Boess; A. Buness; M. Schmitz; M. Watzele; Thomas Weiser; Thomas Singer; Laura Suter; Adrian Roth

Cell-based assays are key tools in drug safety assessment. However, they usually provide only limited information about time-kinetics of a toxic effect and implementing multiple measurements is often complex. To overcome these issues we established an impedance-based approach which is able to differentiate cytostatic from cytotoxic drugs by recording time-kinetics of compound-effects on cells. NIH 3T3 fibroblasts were seeded on xCELLigence® E-plates and impedance was continuously measured over 5 days. The obtained results reflected cytotoxicity and cell proliferation, as confirmed by neutral red uptake in vitro. Based on known toxicants, we established an algorithm able to discriminate cytostatic, cytotoxic and non-toxic compounds based on the shape of the impedance curves. Analyzing impedance curve patterns of additional 37 compounds allowed the identification and differentiation of these distinct effects as results correlated well with previous in vivo findings. We show that impedance-based real-time cell analysis is a convenient tool to characterize and discriminate effects of compounds on cells in a time-dependent and label-free manner. The presented impedance assay could be used to further characterize toxicities observed in vivo or in vitro. Due to the ease of performance it may also be a suitable screening tool.


ALTEX-Alternatives to Animal Experimentation | 2016

Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

Uwe Marx; Tommy Andersson; Anthony Bahinski; Mario Beilmann; Sonja Beken; Flemming R. Cassee; Murat Cirit; Mardas Daneshian; Susan Fitzpatrick; Olivier Frey; Claudia Gaertner; Christoph Giese; Linda G. Griffith; Thomas Hartung; Minne B. Heringa; Julia Hoeng; Wim H. de Jong; Hajime Kojima; Jochen Kuehnl; Marcel Leist; Andreas Luch; Ilka Maschmeyer; D. A. Sakharov; Adriënne J.A.M. Sips; Thomas Steger-Hartmann; Danilo A. Tagle; Alexander G. Tonevitsky; Tewes Tralau; Sergej Tsyb; Anja van de Stolpe

The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.


Molecular and Cellular Neuroscience | 2003

Temporal and spatial gene expression patterns after experimental stroke in a rat model and characterization of PC4, a potential regulator of transcription.

Adrian Roth; Ramanjit Gill; Ulrich Certa

We have used the middle cerebral artery occlusion model in the rat in combination with microarray transcript imaging to study changes in gene activity after ischemic stroke. We analyze transcriptional changes in three regions of the affected, ipsilateral brain sphere using contralateral tissues from the same animal as a control over several time points in 180 individual RNA samples. After 1 h transcription factors and signaling molecules are expressed in all tissues followed by the induction of tissue repair-related genes in the cortices which undergo regeneration. Some of these genes are turned on by PC4, which is upregulated in tissues surrounding the infarct core. Interestingly, PC4 is a nerve growth factor (NGF)-inducible gene and has been associated in earlier studies with neuronal growth processes. The expression mode of PC4, the cellular localization of the gene product, and the functional properties of downstream genes induced in vivo and in vitro using transgenic cell lines suggest that PC4 is a regulator of transcription involved in tissue regeneration after ischemic stroke. The novel experimental strategy applied here is suited to provide insight into the molecular mechanisms underlying stroke and tissue regeneration and may enable the discovery of preventive medicines.


Toxicology in Vitro | 2015

Minimizing DILI risk in drug discovery - A screening tool for drug candidates.

S. Schadt; S. Simon; Stefan Kustermann; Franziska Boess; C. McGinnis; A. Brink; R. Lieven; S. Fowler; K. Youdim; M. Ullah; M. Marschmann; C. Zihlmann; Y.M. Siegrist; A.C. Cascais; E. Di Lenarda; E. Durr; N. Schaub; X. Ang; V. Starke; Thomas Singer; R. Alvarez-Sanchez; Adrian Roth; F. Schuler; Christoph Funk

Drug-induced liver injury (DILI) is a leading cause of acute hepatic failure and a major reason for market withdrawal of drugs. Idiosyncratic DILI is multifactorial, with unclear dose-dependency and poor predictability since the underlying patient-related susceptibilities are not sufficiently understood. Because of these limitations, a pharmaceutical research option would be to reduce the compound-related risk factors in the drug-discovery process. Here we describe the development and validation of a methodology for the assessment of DILI risk of drug candidates. As a training set, 81 marketed or withdrawn compounds with differing DILI rates - according to the FDA categorization - were tested in a combination of assays covering different mechanisms and endpoints contributing to human DILI. These include the generation of reactive metabolites (CYP3A4 time-dependent inhibition and glutathione adduct formation), inhibition of the human bile salt export pump (BSEP), mitochondrial toxicity and cytotoxicity (fibroblasts and human hepatocytes). Different approaches for dose- and exposure-based calibrations were assessed and the same parameters applied to a test set of 39 different compounds. We achieved a similar performance to the training set with an overall accuracy of 79% correctly predicted, a sensitivity of 76% and a specificity of 82%. This test system may be applied in a prospective manner to reduce the risk of idiosyncratic DILI of drug candidates.


Stem Cells and Development | 2015

Stem Cell-Derived Systems in Toxicology Assessment

Laura Suter-Dick; Paula M. Alves; Bas J. Blaauboer; Klaus-Dieter Bremm; Catarina Brito; Sandra Coecke; Burkhard Flick; Paul Fowler; Juergen Hescheler; Magnus Ingelman-Sundberg; Paul Jennings; Jens M. Kelm; Irene Manou; Pratibha Mistry; Angelo Moretto; Adrian Roth; Donald B. Stedman; Bob van de Water; Mario Beilmann

Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and research applications. However, scientific and technical hurdles must be overcome before SCD in vitro methods undergo appropriate validation and become accepted in the regulatory arena.


BioMed Research International | 2016

Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans

Franck A. Atienzar; Eric A. Blomme; Minjun Chen; Philip Hewitt; J. Gerry Kenna; Gilles Labbe; Frederic Moulin; Francois Pognan; Adrian Roth; Laura Suter-Dick; Okechukwu Ukairo; Richard Weaver; Yvonne Will; Donna M. Dambach

Drug-induced liver injury (DILI) is a major cause of late-stage clinical drug attrition, market withdrawal, black-box warnings, and acute liver failure. Consequently, it has been an area of focus for toxicologists and clinicians for several decades. In spite of considerable efforts, limited improvements in DILI prediction have been made and efforts to improve existing preclinical models or develop new test systems remain a high priority. While prediction of intrinsic DILI has improved, identifying compounds with a risk for idiosyncratic DILI (iDILI) remains extremely challenging because of the lack of a clear mechanistic understanding and the multifactorial pathogenesis of idiosyncratic drug reactions. Well-defined clinical diagnostic criteria and risk factors are also missing. This paper summarizes key data interpretation challenges, practical considerations, model limitations, and the need for an integrated risk assessment. As demonstrated through selected initiatives to address other types of toxicities, opportunities exist however for improvement, especially through better concerted efforts at harmonization of current, emerging and novel in vitro systems or through the establishment of strategies for implementation of preclinical DILI models across the pharmaceutical industry. Perspectives on the incorporation of newer technologies and the value of precompetitive consortia to identify useful practices are also discussed.

Collaboration


Dive into the Adrian Roth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge