Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Ruff is active.

Publication


Featured researches published by Adrian Ruff.


Energy and Environmental Science | 2016

Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers

Katarzyna Sokol; Dirk Mersch; Volker Hartmann; Jenny Z. Zhang; Marc M. Nowaczyk; Matthias Rögner; Adrian Ruff; Wolfgang Schuhmann; Nicolas Plumeré; Erwin Reisner

Photosystem II (PSII) is a multi-subunit enzyme responsible for solar-driven water oxidation to release O2 and highly reducing electrons during photosynthesis. The study of PSII in protein film photoelectrochemistry sheds light into its biological function and provides a blueprint for artificial water-splitting systems. However, the integration of macromolecules, such as PSII, into hybrid bio-electrodes is often plagued by poor electrical wiring between the protein guest and the material host. Here, we report a new benchmark PSII–electrode system that combines the efficient wiring afforded by redox-active polymers with the high loading provided by hierarchically-structured inverse opal indium tin oxide (IO-ITO) electrodes. Compared to flat electrodes, the hierarchical IO-ITO electrodes enabled up to an approximately 50-fold increase in the immobilisation of an Os complex-modified and a phenothiazine-modified polymer. When the Os complex-modified polymer is co-adsorbed with PSII on the hierarchical electrodes, photocurrent densities of up to ∼410 μA cm−2 at 0.5 V vs. SHE were observed in the absence of diffusional mediators, demonstrating a substantially improved wiring of PSII to the IO-ITO electrode with the redox polymer. The high photocurrent density allowed for the quantification of O2 evolution, and a Faradaic efficiency of 85 ± 9% was measured. As such, we have demonstrated a high performing and fully integrated host–guest system with excellent electronic wiring and loading capacity. This assembly strategy may form the basis of all-integrated electrode designs for a wide range of biological and synthetic catalysts.


Journal of Colloid and Interface Science | 2012

Stöber silica particles as basis for redox modifications: particle shape, size, polydispersity, and porosity.

Nicolas Plumeré; Adrian Ruff; Bernd Speiser; Verena Feldmann; Hermann A. Mayer

The synthesis of Stöber silica particles as basis for redox modifications is optimized for desired properties, in particular diameter in a wide sub-micrometer range, spherical shape, monodispersity, the absence of porosity, and aggregation free isolability for characterization and later covalent modification. The materials are characterized by SEM, DLS, nitrogen sorption isotherms, helium as well as Gay-Lussac (water) pycnometry, and DRIFT spectroscopy. Particles with diameters between approximately 50 and 800 nm are obtained by varying the concentrations of the reagents and reactants, the type of solvent as well as the temperature. The use of high water concentrations and post-synthetic calcination at 600 °C results in silica particles that can be considered as nonporous with respect to the size of the active molecules to be immobilized. The effect of reaction temperature on size distribution is identified. Low polydispersity is achieved by performing the reaction in a temperature range in which a change in temperature has only a weak or no effect on the final particle diameter. Upon optimization of the sol-gel process, the shape of the particles is still spherical. The agreement between experimental and geometric data is within the expected precision of the characterization techniques.


Chemistry: A European Journal | 2016

Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells.

Piyanut Pinyou; Adrian Ruff; Sascha Pöller; Su Ma; Roland Ludwig; Wolfgang Schuhmann

Multistep synthesis and electrochemical characterization of an Os complex-modified redox hydrogel exhibiting a redox potential ≈+30 mV (vs. Ag/AgCl 3 M KCl) is demonstrated. The careful selection of bipyridine-based ligands bearing N,N-dimethylamino moieties and an amino-linker for the covalent attachment to the polymer backbone ensures the formation of a stable redox polymer with an envisaged redox potential close to 0 V. Most importantly, the formation of an octahedral N6-coordination sphere around the Os central atoms provides improved stability concomitantly with the low formal potential, a low reorganization energy during the Os(3+/2+) redox conversion and a negligible impact on oxygen reduction. By wiring a variety of enzymes such as pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase, flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and the FAD-dependent dehydrogenase domain of cellobiose dehydrogenase, low-potential glucose biosensors could be obtained with negligible co-oxidation of common interfering compounds such as uric acid or ascorbic acid. In combination with a bilirubin oxidase-based biocathode, enzymatic biofuel cells with open-circuit voltages of up to 0.54 V were obtained.


Polymer Chemistry | 2014

Dithienosilole-based all-conjugated block copolymers synthesized by a combination of quasi-living Kumada and Negishi catalyst-transfer polycondensations

T. Erdmann; Justus Back; Roman Tkachov; Adrian Ruff; Brigitte Voit; Sabine Ludwigs; Anton Kiriy

Herein, we present a quasi-living Negishi-type catalyst-transfer polycondensation of a zinc–organic DTS-based monomer which provides an access to narrowly distributed poly(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole (PDTS) with controlled molecular weight. The synthesis of well-defined all-conjugated diblock copolymers containing a PDTS block was accomplished by a combination of Kumada and Negishi catalyst-transfer polycondensations (KCTP and NCTP, respectively). Particularly, it was shown that living P3HT chains obtained by KCTP of magnesium–organic thiophene-based monomer efficiently initiate NCTP of zinc–organic DTS-based monomer. The purity of the DTS-based monomer was found to be a crucial factor for achieving a clean chain-growth polymerization process. A combination of physico-chemical methods was used to prove the success of the block copolymerization.


ACS Nano | 2015

Light-controlled morphologies of self-assembled triarylamine-fullerene conjugates.

Eric Busseron; Juan-José Cid; Adrian Wolf; Guangyan Du; Emilie Moulin; Gad Fuks; Mounir Maaloum; Prasad Polavarapu; Adrian Ruff; Ann-Kathrin Saur; Sabine Ludwigs; Nicolas Giuseppone

A family of triarylamine-fullerene conjugates has been synthesized and shown to self-assemble upon light stimulation in chlorinated solvents. This light-induced process primarily involves excitation of triarylamine derivatives, which then oxidize and stack with their neutral counterparts to form charge transfer complexes in the form of p-conducting channels, while fullerenes are consequently enforced in coaxial n-conducting columnar arrangements. These supramolecular heterojunctions can be organized over very long distances in micrometric fibers when a controlled amount of photons is provided from a white light source to initiate the process. Surprisingly, when sunlight or UV light is used instead, the nanostructuration leads to monodisperse spherical objects due to the nature of the nucleation-growth process involved in the stacks formation. This control over the supramolecular morphology of organic self-assemblies using the nature of light is of general interest for the design of functional responsive materials.


ACS energy letters | 2017

Protection and Reactivation of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Hildenborough under Oxidative Conditions

Adrian Ruff; Julian Szczesny; Sonia Zacarias; Inês A. C. Pereira; Nicolas Plumeré; Wolfgang Schuhmann

We report on the fabrication of bioanodes for H2 oxidation based on [NiFeSe] hydrogenase. The enzyme was electrically wired by means of a specifically designed low-potential viologen-modified polymer, which delivers benchmark H2 oxidizing currents even under deactivating conditions owing to efficient protection against O2 combined with a viologen-induced reactivation of the O2 inhibited enzyme. Moreover, the viologen-modified polymer allows for electrochemical co-deposition of polymer and biocatalyst and, by this, for control of the film thickness. Protection and reactivation of the enzyme was demonstrated in thick and thin reaction layers.


Chemistry: A European Journal | 2013

[6,6]‐Open and [6,6]‐Closed Isomers of C70(CF2): Synthesis, Electrochemical and Quantum Chemical Investigation

Nataliya A. Samoylova; Nikita M. Belov; Victor A. Brotsman; Ilya N. Ioffe; Natalia S. Lukonina; Vitaliy Yu. Markov; Adrian Ruff; Alexey V. Rybalchenko; Paul Schuler; Olesya O. Semivrazhskaya; Bernd Speiser; Sergey I. Troyanov; Tatiana V. Magdesieva; Alexey A. Goryunkov

Novel difluoromethylenated [70]fullerene derivatives, C70(CF2 )n (n=1-3), were obtained by the reaction of C70 with sodium difluorochloroacetate. Two major products, isomeric C70(CF2 ) mono-adducts with [6,6]-open and [6,6]-closed configurations, were isolated and their homofullerene and methanofullerene structures were reliably determined by a variety of methods that included X-ray analysis and high-level spectroscopic techniques. The [6,6]-open isomer of C70(CF2 ) constitutes the first homofullerene example of a non-hetero [70]fullerene derivative in which functionalisation involves the most reactive bond in the polar region of the cage. Voltammetric estimation of the electron affinity of the C70(CF2 ) isomers showed that it is substantially higher for the [6,6]-open isomer (the 70-electron π-conjugated system is retained) than the [6,6]-closed form, the latter being similar to the electron affinity of pristine C70. In situ ESR spectroelectrochemical investigation of the C70(CF2 ) radical anions and DFT calculations of the hyperfine coupling constants provide evidence for the first example of an inter-conversion between the [6,6]-closed and [6,6]-open forms of a cage-modified fullerene driven by an electrochemical one-electron transfer. Thus, [6,6]-closed C70(CF2 ) constitutes an interesting example of a redox-switchable fullerene derivative.


Bioelectrochemistry | 2016

Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers.

Piyanut Pinyou; Adrian Ruff; Sascha Pöller; Sabine Alsaoub; Silke Leimkühler; Ulla Wollenberger; Wolfgang Schuhmann

Phenothiazine-modified redox hydrogels were synthesized and used for the wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces. The effects of the pH value and electrode surface modification on the biocatalytic activity of the layers were studied in the presence of vanillin as the substrate. The enzyme electrodes were successfully employed as bioanodes in vanillin/O2 biofuel cells in combination with a high potential bilirubin oxidase biocathode. Open circuit voltages of around 700 mV could be obtained in a two compartment biofuel cell setup. Moreover, the use of a rather hydrophobic polymer with a high degree of crosslinking sites ensures the formation of stable polymer/enzyme films which were successfully used as bioanode in membrane-less biofuel cells.


Angewandte Chemie | 2013

Anti-[2.2](1,4)pentacenophane: A Covalently Coupled Pentacene Dimer†

Rafael Bula; Michael Fingerle; Adrian Ruff; Bernd Speiser; Cäcilia Maichle-Mössmer; Holger F. Bettinger

Two in a row: A pentacene dimer in which both units are covalently linked through a [2.2]paracyclophane bridge, has been synthesized. The electronic properties of the molecule were elucidated by a combination of experimental and computational methods. Such molecules could lead to materials with improved charge-transport properties.


Polymer Chemistry | 2014

Branched polythiophenes by Ni-catalyzed Kumada coupling

Martin Scheuble; Thomas Richter; Miriam Goll; Steffen Link; Juan T. López Navarrete; Adrian Ruff; M. Carmen Ruiz Delgado; Sabine Ludwigs

The controlled synthesis of branched polythiophenes via Ni-catalyzed Kumada type coupling of branched AB2 monomers prepared in situ from 5,5′′-dibromo-2,2′:3′,2′′-terthiophene (3TBr2) and 5,5′,5′′-tribromo-2,2′:3′,2′′-terthiophene (3TBr3) is presented. The access to highly branched polymer architectures with rather high molecular weights is a key benefit of this one-pot polymerization with respect to standard oxidative polymerization procedures. Our synthetic route further allows the in situ endgroup functionalization as shown exemplarily for pentene functionalized branched polythiophenes and eases thereby the access to branched polythiophenes with tailor-made properties. In particular a comparison of the optical properties allows conclusions about the architecture of the obtained materials with respect to linear and fully branched systems. Energy levels are obtained by cyclic voltammetry measurements in thin films. DFT calculations provide further guidance on the interpretation of the possible molecular structure of the polymer (i.e. branching density) in correlation with their properties.

Collaboration


Dive into the Adrian Ruff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Schuler

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Goll

University of Stuttgart

View shared research outputs
Researchain Logo
Decentralizing Knowledge