Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Scaffidi is active.

Publication


Featured researches published by Adrian Scaffidi.


Development | 2012

Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis

Mark T. Waters; David C. Nelson; Adrian Scaffidi; Gavin R. Flematti; Yueming K. Sun; Kingsley W. Dixon; Steven M. Smith

Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.


Proceedings of the National Academy of Sciences of the United States of America | 2011

F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana

David C. Nelson; Adrian Scaffidi; Elizabeth A. Dun; Mark T. Waters; Gavin R. Flematti; Kingsley W. Dixon; Christine A. Beveridge; Emilio L. Ghisalberti; Steven M. Smith

Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates responses to the structurally-related strigolactone family of phytohormones. Karrikins and the synthetic strigolactone GR24 trigger similar effects on seed germination, seedling photomorphogenesis, and expression of a small set of genes during these developmental stages. Karrikins also repress MAX4 and IAA1 transcripts, which show negative feedback regulation by strigolactone. We demonstrate that all of these common responses are abolished in max2 mutants. Unlike strigolactones, however, karrikins do not inhibit shoot branching in Arabidopsis or pea, indicating that plants can distinguish between these signals. These results suggest that a MAX2-dependent signal transduction mechanism was adapted to mediate responses to two chemical cues with distinct roles in plant ecology and development.


Plant Physiology | 2014

Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis

Adrian Scaffidi; Mark T. Waters; Yueming K. Sun; Brian W. Skelton; Kingsley W. Dixon; Emilio L. Ghisalberti; Gavin R. Flematti; Steven M. Smith

Strigolactone hormones signal through a specific receptor to induce particular responses in Arabidopsis, whereas their stereoisomers induce different responses by signaling through a closely related receptor that also perceives karrikins from wildfires. Two α/β-fold hydrolases, KARRIKIN INSENSITIVE2 (KAI2) and Arabidopsis thaliana DWARF14 (AtD14), are necessary for responses to karrikins (KARs) and strigolactones (SLs) in Arabidopsis (Arabidopsis thaliana). Although KAI2 mediates responses to KARs and some SL analogs, AtD14 mediates SL but not KAR responses. To further determine the specificity of these proteins, we assessed the ability of naturally occurring deoxystrigolactones to inhibit Arabidopsis hypocotyl elongation, regulate seedling gene expression, suppress outgrowth of secondary inflorescences, and promote seed germination. Neither 5-deoxystrigol nor 4-deoxyorobanchol was active in KAI2-dependent seed germination or hypocotyl elongation, but both were active in AtD14-dependent hypocotyl elongation and secondary shoot growth. However, the nonnatural enantiomer of 5-deoxystrigol was active through KAI2 in growth and gene expression assays. We found that the four stereoisomers of the SL analog GR24 had similar activities to their deoxystrigolactone counterparts. The results suggest that AtD14 and KAI2 exhibit selectivity to the butenolide D ring in the 2′R and 2′S configurations, respectively. However, we found, for nitrile-debranone (CN-debranone, a simple SL analog), that the 2′R configuration is inactive but that the 2′S configuration is active through both AtD14 and KAI2. Our results support the conclusion that KAI2-dependent signaling does not respond to canonical SLs. Furthermore, racemic mixtures of chemically synthesized SLs and their analogs, such as GR24, should be used with caution because they can activate responses that are not specific to naturally occurring SLs. In contrast, the use of specific stereoisomers might provide valuable information about the specific perception systems operating in different plant tissues, parasitic weed seeds, and arbuscular mycorrhizae.


Journal of Biological Chemistry | 2011

Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases

Christopher G. Jones; Jessie Moniodis; Katherine G. Zulak; Adrian Scaffidi; Julie A. Plummer; Emilio L. Ghisalberti; Elizabeth L. Barbour; Jörg Bohlmann

Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Lateral branching oxidoreductase acts in the final stages of strigolactone biosynthesis in Arabidopsis

Philip B. Brewer; Kaori Yoneyama; Fiona Filardo; Emma Meyers; Adrian Scaffidi; Tancred Frickey; Kohki Akiyama; Yoshiya Seto; Elizabeth A. Dun; Julia E. Cremer; Stephanie C. Kerr; Mark T. Waters; Gavin R. Flematti; Michael G. Mason; Georg F. Weiller; Shinjiro Yamaguchi; Takahito Nomura; Steven M. Smith; Koichi Yoneyama; Christine A. Beveridge

Significance Strigolactone hormones regulate many plant growth and developmental processes and are particularly important in regulating growth in response to nonoptimal conditions. Plants produce a range of bioactive strigolactone-like compounds, suggesting that the biosynthesis pathway is complex. Despite this complexity, only one type of enzyme, the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450, has been attributed to the diversity of strigolactones. Using transcriptomics and reverse genetics, we discovered a previously uncharacterized gene that encodes a 2-oxoglutarate and Fe(II)-dependent dioxygenase involved in strigolactone production downstream of MAX1. Studies with the corresponding mutant have shown that previously identified strigolactone-type compounds in Arabidopsis are not the major strigolactone-type shoot branching hormone in this model species. Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.


Plant Journal | 2013

Carlactone-independent seedling morphogenesis in Arabidopsis

Adrian Scaffidi; Mark T. Waters; Emilio L. Ghisalberti; Kingsley W. Dixon; Gavin R. Flematti; Steven M. Smith

Strigolactone hormones are derived from carotenoids via carlactone, and act through the α/β-hydrolase D14 and the F-box protein D3/MAX2 to repress plant shoot branching. While MAX2 is also necessary for normal seedling development, D14 and the known strigolactone biosynthesis genes are not, raising the question of whether endogenous, canonical strigolactones derived from carlactone have a role in seedling morphogenesis. Here, we report the chemical synthesis of the strigolactone precursor carlactone, and show that it represses Arabidopsis shoot branching and influences leaf morphogenesis via a mechanism that is dependent on the cytochrome P450 MAX1. In contrast, both physiologically active Z-carlactone and the non-physiological E isomer exhibit similar weak activity in seedlings, and predominantly signal through D14 rather than its paralogue KAI2, in a MAX2-dependent but MAX1-independent manner. KAI2 is essential for seedling morphogenesis, and hence this early-stage development employs carlactone-independent morphogens for which karrikins from wildfire smoke are specific surrogates. While the commonly employed synthetic strigolactone GR24 acts non-specifically through both D14 and KAI2, carlactone is a specific effector of strigolactone signalling that acts through MAX1 and D14.


Cell Research | 2015

Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3

Li-Hua Zhao; X. Edward Zhou; Wei Yi; Zhongshan Wu; Yue Liu; Yanyong Kang; Li Hou; Parker W. de Waal; Suling Li; Yi Jiang; Adrian Scaffidi; Gavin R. Flematti; Steven M. Smith; Vinh Q. Lam; Patrick R. Griffin; Yonghong Wang; Jiayang Li; Karsten Melcher; H. Eric Xu

Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process.


Plant Journal | 2014

The karrikin response system of Arabidopsis

Mark T. Waters; Adrian Scaffidi; Yueming K. Sun; Gavin R. Flematti; Steven M. Smith

Arabidopsis thaliana provides a powerful means to investigate the mode of action of karrikins, compounds produced during wildfires that stimulate germination of seeds of fire-following taxa. These studies have revealed close parallels between karrikin signalling and strigolactone signalling. The two perception systems employ similar mechanisms involving closely related α/β-fold hydrolases (KAI2 and AtD14) and a common F-box protein (MAX2). However, karrikins and strigolactones may be distinguished from each other and elicit different responses. The karrikin response requires a newly discovered protein (SMAX1), a homologue of rice protein D53 that is required for the strigolactone response. Mutants defective in the response to karrikins have seeds with increased dormancy, altered seedling photomorphogenesis and modified leaf shape. As the karrikin and strigolactone response mechanisms are so similar, it is speculated that the endogenous signalling compound for the KAI2 system may be a specific strigolactone. However, new results show that the proposed endogenous signalling compound is not produced by the known strigolactone biosynthesis pathway via carlactone. Structural studies of KAI2 protein and its interaction with karrikins and strigolactone analogues provide some insight into possible protein-ligand interactions, but are hampered by lack of knowledge of the endogenous ligand. The KAI2 system appears to be present throughout angiosperms, implying a fundamentally important function in plant biology.


Bioorganic & Medicinal Chemistry Letters | 2012

Exploring the molecular mechanism of karrikins and strigolactones

Adrian Scaffidi; Mark T. Waters; Charles S. Bond; Kingsley W. Dixon; Steven M. Smith; Emilio L. Ghisalberti; Gavin R. Flematti

Karrikins and strigolactones are novel plant growth regulators that contain similar molecular features, but very little is known about how they elicit responses in plants. A tentative molecular mechanism has previously been proposed involving a Michael-type addition for both compounds. Through structure-activity studies with karrikins, we now propose an alternative mechanism for karrikin and strigolactone mode of action that involves hydrolysis of the butenolide ring.


PLOS ONE | 2013

The Structure of the Karrikin-Insensitive Protein (KAI2) in Arabidopsis thaliana

Rohan Bythell-Douglas; Mark T. Waters; Adrian Scaffidi; Gavin R. Flematti; Steven M. Smith; Charles S. Bond

KARRIKIN INSENSITIVE 2 (KAI2) is an α/β hydrolase involved in seed germination and seedling development. It is essential for plant responses to karrikins, a class of butenolide compounds derived from burnt plant material that are structurally similar to strigolactone plant hormones. The mechanistic basis for the function of KAI2 in plant development remains unclear. We have determined the crystal structure of Arabidopsis thaliana KAI2 in space groups P21 21 21 (a  = 63.57 Å, b  = 66.26 Å, c  = 78.25 Å) and P21 (a  = 50.20 Å, b  = 56.04 Å, c  = 52.43 Å, β  = 116.12°) to 1.55 and 2.11 Å respectively. The catalytic residues are positioned within a large hydrophobic pocket similar to that of DAD2, a protein required for strigolactone response in Petunia hybrida. KAI2 possesses a second solvent-accessible pocket, adjacent to the active site cavity, which offers the possibility of allosteric regulation. The structure of KAI2 is consistent with its designation as a serine hydrolase, as well as previous data implicating the protein in karrikin and strigolactone signalling.

Collaboration


Dive into the Adrian Scaffidi's collaboration.

Top Co-Authors

Avatar

Gavin R. Flematti

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark T. Waters

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Robert V. Stick

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Emilio L. Ghisalberti

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Skelton

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Allan H. White

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Yueming K. Sun

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Keith A. Stubbs

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge