Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Thomas Huber is active.

Publication


Featured researches published by Adrian Thomas Huber.


European Journal of Radiology | 2013

Lung cancer screening with CT: Evaluation of radiologists and different computer assisted detection software (CAD) as first and second readers for lung nodule detection at different dose levels

Andreas Christe; Lars Leidolt; Adrian Thomas Huber; Philipp Steiger; Zsolt Szucs-Farkas; Justus E. Roos; Johannes T. Heverhagen; Lukas Ebner

OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.


Journal of clinical imaging science | 2014

Feasible Dose Reduction in Routine Chest Computed Tomography Maintaining Constant Image Quality Using the Last Three Scanner Generations: From Filtered Back Projection to Sinogram-affirmed Iterative Reconstruction and Impact of the Novel Fully Integrated Detector Design Minimizing Electronic Noise

Lukas Ebner; Felix Knobloch; Adrian Thomas Huber; Julia Landau; Daniel Ott; Johannes T. Heverhagen; Andreas Christe

Objective: The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.


American Journal of Roentgenology | 2015

Lung Nodule Detection by Microdose CT Versus Chest Radiography (Standard and Dual-Energy Subtracted)

Lukas Ebner; Yanik Frederik Bütikofer; Daniel Ott; Adrian Thomas Huber; Julia Landau; Justus E. Roos; Johannes T. Heverhagen; Andreas Christe

OBJECTIVE The purpose of this study was to investigate the feasibility of microdose CT using a comparable dose as for conventional chest radiographs in two planes including dual-energy subtraction for lung nodule assessment. MATERIALS AND METHODS We investigated 65 chest phantoms with 141 lung nodules, using an anthropomorphic chest phantom with artificial lung nodules. Microdose CT parameters were 80 kV and 6 mAs, with pitch of 2.2. Iterative reconstruction algorithms and an integrated circuit detector system (Stellar, Siemens Healthcare) were applied for maximum dose reduction. Maximum intensity projections (MIPs) were reconstructed. Chest radiographs were acquired in two projections with bone suppression. Four blinded radiologists interpreted the images in random order. RESULTS A soft-tissue CT kernel (I30f) delivered better sensitivities in a pilot study than a hard kernel (I70f), with respective mean (SD) sensitivities of 91.1%±2.2% versus 85.6%±5.6% (p=0.041). Nodule size was measured accurately for all kernels. Mean clustered nodule sensitivity with chest radiography was 45.7%±8.1% (with bone suppression, 46.1%±8%; p=0.94); for microdose CT, nodule sensitivity was 83.6%±9% without MIP (with additional MIP, 92.5%±6%; p<10(-3)). Individual sensitivities of microdose CT for readers 1, 2, 3, and 4 were 84.3%, 90.7%, 68.6%, and 45.0%, respectively. Sensitivities with chest radiography for readers 1, 2, 3, and 4 were 42.9%, 58.6%, 36.4%, and 90.7%, respectively. In the per-phantom analysis, respective sensitivities of microdose CT versus chest radiography were 96.2% and 75% (p<10(-6)). The effective dose for chest radiography including dual-energy subtraction was 0.242 mSv; for microdose CT, the applied dose was 0.1323 mSv. CONCLUSION Microdose CT is better than the combination of chest radiography and dual-energy subtraction for the detection of solid nodules between 5 and 12 mm at a lower dose level of 0.13 mSv. Soft-tissue kernels allow better sensitivities. These preliminary results indicate that microdose CT has the potential to replace conventional chest radiography for lung nodule detection.


American Journal of Roentgenology | 2016

Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels

Lukas Ebner; Justus E. Roos; Jared D. Christensen; Tomas Dobrocky; Lars Leidolt; Barbara Brela; Verena Carola Obmann; Sonya Joy; Adrian Thomas Huber; Andreas Christe

OBJECTIVE The objective of our study was to evaluate lung nodule detection rates on standard and microdose chest CT with two different computer-aided detection systems (SyngoCT-CAD, VA 20, Siemens Healthcare [CAD1]; Lung CAD, IntelliSpace Portal DX Server, Philips Healthcare [CAD2]) as well as maximum-intensity-projection (MIP) images. We also assessed the impact of different reconstruction kernels. MATERIALS AND METHODS Standard and microdose CT using three reconstruction kernels (i30, i50, i70) was performed with an anthropomorphic chest phantom. We placed 133 ground-glass and 133 solid nodules (diameters of 5 mm, 8 mm, 10 mm, and 12 mm) in 55 phantoms. Four blinded readers evaluated the MIP images; one recorded the results of CAD1 and CAD2. Sensitivities for CAD and MIP nodule detection on standard dose and microdose CT were calculated for each reconstruction kernel. RESULTS Dose for microdose CT was significantly less than that for standard-dose CT (0.1323 mSv vs 1.65 mSv; p < 0.0001). CAD1 delivered superior results compared with CAD2 for standard-dose and microdose CT (p < 0.0001). At microdose level, the best stand-alone sensitivity (97.6%) was comparable with CAD1 sensitivity (96.0%; p = 0.36; both with i30 reconstruction kernel). Pooled sensitivities for all nodules, doses, and reconstruction kernels on CAD1 ranged from 88.9% to 97.3% versus 49.6% to 73.9% for CAD2. The best sensitivity was achieved with standard-dose CT, i50 kernel, and CAD1 (97.3%) versus 96% with microdose CT, i30 or i50 kernel, and CAD1. MIP images and CAD1 had similar performance at both dose levels (p = 0.1313 and p = 0.48). CONCLUSION Submillisievert CT is feasible for detecting solid and ground-glass nodules that require soft-tissue kernels for MIP and CAD systems to achieve acceptable sensitivities. MIP reconstructions remain a valuable adjunct to the interpretation of chest CT for increasing sensitivity and have the advantage of significantly lower false-positive rates.


PLOS ONE | 2013

Optimal Dose Levels in Screening Chest CT for Unimpaired Detection and Volumetry of Lung Nodules, with and without Computer Assisted Detection at Minimal Patient Radiation

Andreas Christe; Zsolt Szucs-Farkas; Adrian Thomas Huber; Philipp Steiger; Lars Leidolt; Justus E. Roos; Johannes T. Heverhagen; Lukas Ebner

Objectives The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. Methods An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5–12 mm) was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp). For each protocol, at least 127 different nodules were scanned in 21–25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD) software. Results The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7%±4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6%±4.3% (p = 0.031)]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists’ sensitivity for detecting solid nodules at all dose levels (5–11%). No significant volume measurement errors (VMEs) were documented for the radiologists or the CAD software at any dose level. Conclusions Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.


PLOS ONE | 2016

Focal and Generalized Patterns of Cerebral Cortical Veins Due to Non-Convulsive Status Epilepticus or Prolonged Seizure Episode after Convulsive Status Epilepticus - A MRI Study Using Susceptibility Weighted Imaging.

Rajeev Kumar Verma; Eugenio Abela; Kaspar Schindler; Heinz Eric Krestel; Elisabeth Springer; Adrian Thomas Huber; Christian Weisstanner; Martinus Hauf; Jan Gralla; Roland Wiest

Objective The aim of this study was to investigate variant patterns of cortical venous oxygenation during status epilepticus (SE) using susceptibility-weighted imaging (SWI). Methods We analyzed magnetic resonance imaging (MRI) scans of 26 patients with clinically witnessed prolonged seizures and/or EEG-confirmed SE. All MRI exams encompassed SWI, dynamic susceptibility contrast perfusion MRI (MRI-DSC) and diffusion-weighted imaging (DWI). We aimed to identify distinct patterns of SWI signal alterations that revealed regional or global increases of cerebral blood flow (CBF) and DWI restrictions. We hypothesized that SWI-related oxygenation patterns reflect ictal or postictal patterns that resemble SE or sequelae of seizures. Results Sixteen patients were examined during nonconvulsive status epilepticus (NCSE) as confirmed by EEG, a further ten patients suffered from witnessed and prolonged seizure episode ahead of imaging without initial EEG. MRI patterns of 15 of the 26 patients revealed generalized hyperoxygenation by SWI in keeping with either global or multifocal cortical hyperperfusion. Eight patients revealed a focal hyperoxygenation pattern related to focal CBF increase and three patients showed a focal deoxygenation pattern related to focal CBF decrease. Conclusions SWI-related hyper- and deoxygenation patterns resemble ictal and postictal CBF changes within a range from globally increased to focally decreased perfusion. In all 26 patients the SWI patterns were in keeping with ictal hyperperfusion (hyperoxygenation patterns) or postictal hypoperfusion (deoxygenation patterns) respectively. A new finding of this study is that cortical venous patterns in SWI can be not only focally, but globally attenuated. SWI may thus be considered as an alternative contrast-free MR sequence to identify perfusion changes related to ictal or postictal conditions.


Swiss Medical Weekly | 2014

Computed tomography findings in liver fibrosis and cirrhosis.

Adrian Thomas Huber; Lukas Ebner; Matteo Montani; Nasser Semmo; Choudhury Roy; Johannes T. Heverhagen; Andreas Christe

PRINCIPLES Computed tomography (CT) is inferior to the fibroscan and laboratory testing in the noninvasive diagnosis of liver fibrosis. On the other hand, CT is a frequently used diagnostic tool in modern medicine. The auxiliary finding of clinically occult liver fibrosis in CT scans could result in an earlier diagnosis. The aim of this study was to analyse quantifiable direct signs of liver remodelling in CT scans to depict liver fibrosis in a precirrhotic stage. METHODS Retrospective review of 148 abdominal CT scans (80 liver cirrhosis, 35 precirrhotic fibrosis and 33 control patients). Fibrosis and cirrhosis were histologically proven. The diameters of the three main hepatic veins were measured 1-2 cm before their aperture into the inferior caval vein. The width of the caudate and the right hepatic lobe were divided, and measured horizontally at the level of the first bifurcation of the right portal vein in axial planes (caudate-right-lobe ratio). A combination of both (sum of liver vein diameters divided by the caudate-right lobe ratio) was defined as the ld/crl ratio. These metrics were analysed for the detection of liver fibrosis and cirrhosis. RESULTS An ld/crl-r <24 showed a sensitivity of 83% and a specificity of 76% for precirrhotic liver fibrosis. Liver cirrhosis could be detected with a sensitivity of 88% and a specificity of 82% if ld/crl-r <20. CONCLUSION An ld/crl-r <24 justifies laboratory testing and a fibroscan. This could bring forward the diagnosis and patients would profit from early treatment in a potentially reversible stage of disease.


Investigative Radiology | 2016

Hepatocellular Carcinoma Screening With Computed Tomography Using the Arterial Enhancement Fraction With Radiologic-Pathologic Correlation.

Adrian Thomas Huber; Frederik Schuster; Lukas Ebner; Yanik Frederik Bütikofer; Daniel Ott; Lars Leidolt; Andreas Jöres; Matteo Montani; Johannes T. Heverhagen; Andreas Christe

ObjectiveThe aim of this study was to investigate the performance of the arterial enhancement fraction (AEF) in multiphasic computed tomography (CT) acquisitions to detect hepatocellular carcinoma (HCC) in liver transplant recipients in correlation with the pathologic analysis of the corresponding liver explants. Materials and MethodsFifty-five transplant recipients were analyzed: 35 patients with 108 histologically proven HCC lesions and 20 patients with end-stage liver disease without HCC. Six radiologists looked at the triphasic CT acquisitions with the AEF maps in a first readout. For the second readout without the AEF maps, 3 radiologists analyzed triphasic CT acquisitions (group 1), whereas the other 3 readers had 4 contrast acquisitions available (group 2). A jackknife free-response reader receiver operating characteristic analysis was used to compare the readout performance of the readers. Receiver operating characteristic analysis was used to determine the optimal cutoff value of the AEF. ResultsThe figure of merit (&thgr; = 0.6935) for the conventional triphasic readout was significantly inferior compared with the triphasic readout with additional use of the AEF (&thgr; = 0.7478, P < 0.0001) in group 1. There was no significant difference between the fourphasic conventional readout (&thgr; = 0.7569) and the triphasic readout (&thgr; = 0.7615, P = 0.7541) with the AEF in group 2. Without the AEF, HCC lesions were detected with a sensitivity of 30.7% (95% confidence interval [CI], 25.5%–36.4%) and a specificity of 97.1% (96.0%–98.0%) by group 1 looking at 3 CT acquisition phases and with a sensitivity of 42.1% (36.2%–48.1%) and a specificity of 97.5% (96.4%–98.3%) in group 2 looking at 4 CT acquisition phases. Using the AEF maps, both groups looking at the same 3 acquisition phases, the sensitivity was 47.7% (95% CI, 41.9%–53.5%) with a specificity of 97.4% (96.4%–98.3%) in group 1 and 49.8% (95% CI, 43.9%–55.8%)/97.6% (96.6%–98.4%) in group 2. The optimal cutoff for the AEF was 50%. ConclusionThe AEF is a helpful tool to screen for HCC with CT. The use of the AEF maps may significantly improve HCC detection, which allows omitting the fourth CT acquisition phase and thus making a 25% reduction of radiation dose possible.


Radiology Case Reports | 2015

Primary intramedullary melanocytoma in the cervical spinal cord: Case report and literature review.

Franca Wagner; Sabina Anna Berezowska; Roland Wiest; Jan Gralla; Jürgen Beck; Rajeev Kumar Verma; Adrian Thomas Huber

A 63-year-old man with right hemiparesis was found (on MRI) to have an expansive intramedullary tumorous lesion at the C2-C3 level. After complete neurosurgical tumor resection, the tumor was histologically categorized as an intermediate grade of intramedullary melanocytoma, an uncommon neoplasm. Based on this peculiar case and review of the literature, radical surgical resection appears to be the therapy of choice for intramedullary melanocytomas. However, their high recurrence rate and aggressive behavior suggest the need for close followup with serial MRI.


International Scholarly Research Notices | 2014

Diagnostic Performance and Additional Value of Elastosonography in Focal Breast Lesions: Statistical Correlation between Size-Dependant Strain Index Measurements, Multimodality-BI-RADS Score, and Histopathology in a Clinical Routine Setting.

Lukas Ebner; Harald Marcel Bonel; Adrian Thomas Huber; Steffen Ross; Andreas Christe

Objective. To evaluate the diagnostic benefit of real-time elastography (RTE) in clinical routine. Strain indices (SI) for benign and malignant tumors were assessed. Methods. 100 patients with 110 focal breast lesions were retrieved. Patients had mammography (MG), ultrasound (US), and, if necessary, MRI. RTE was conducted after ultrasound. Lesions were assessed with BI-RADS for mammography and ultrasound. Diagnosis was established with histology or follow-up. Results. SI for BI-RADS 2 was 1.71 ± 0.86. Higher SI (2.21 ± 1.96) was observed for BI-RADS 3 lesions. SI of BI-RADS 4 and 5 lesions were significantly higher (16.92 ± 20.89) and (19.54 ± 10.41). 31 malignant tumors exhibited an average SI of 16.13 ± 14.67; SI of benign lesions was 5.29 ± 11.87 (P value <0.0001). ROC analysis threshold was >3.8 for malignant disease. Sensitivity of sonography was 90.3% (specificity 78.5%). RTE showed a sensitivity of 87.1% (specificity 79.7%). Accuracy of all modalities combined was 96.8%. In BI-RADS 3 lesions RTE was able to detect all malignant lesions (sensitivity 100%, specificity 92.9%, and accuracy 93.9%). Conclusions. RTE increased sensitivity and specificity for breast cancer detection when used in combination with ultrasound.

Collaboration


Dive into the Adrian Thomas Huber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge