Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Zuercher is active.

Publication


Featured researches published by Adrian Zuercher.


Journal of Immunology | 2002

Nasal-Associated Lymphoid Tissue Is a Mucosal Inductive Site for Virus-Specific Humoral and Cellular Immune Responses

Adrian Zuercher; Susan E. Coffin; M. Christine Thurnheer; Petra Fundova; John J. Cebra

Peyer’s patches are known as mucosal inductive sites for humoral and cellular immune responses in the gastrointestinal tract. In contrast, functionally equivalent structures in the respiratory tract remain elusive. It has been suggested that nasal-associated lymphoid tissue (NALT) might serve as a mucosal inductive site in the upper respiratory tract. However, typical signs of mucosal inductive sites like development of germinal center reactions after Ag stimulation and isotype switching of naive B cells to IgA production have not been directly demonstrated. Moreover, it is not known whether CTL can be generated in NALT. To address these issues, NALT was structurally and functionally analyzed using a model of intranasal infection of C3H mice with reovirus. FACS and histological analyses revealed development of germinal centers in NALT in parallel with generation and expansion of IgA+ and IgG2a+ B cells after intranasal reovirus infection. Reovirus-specific IgA was produced in both the upper respiratory and the gastrointestinal tract, whereas production of reovirus-specific IgG2a was restricted to NALT, submandibular, and mesenteric lymph nodes. Moreover, virus-specific CTL were detected in NALT. Limiting dilution analysis showed a 5- to 6-fold higher precursor CTL frequency in NALT compared with a cervical lymph node. Together these data provide direct evidence that NALT is a mucosal inductive site for humoral and cellular immune responses in the upper respiratory tract.


PLOS ONE | 2012

Analysis and Functional Consequences of Increased Fab-Sialylation of Intravenous Immunoglobulin (IVIG) after Lectin Fractionation

Fabian Käsermann; David J. Boerema; Monika Rüegsegger; Andreas Hofmann; Sandra Wymann; Adrian Zuercher; Sylvia Miescher

It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation.


Journal of Immunology | 2014

Therapeutic Effect of IVIG on Inflammatory Arthritis in Mice Is Dependent on the Fc Portion and Independent of Sialylation or Basophils

Ian K. Campbell; Sylvia Miescher; Donald R. Branch; Patrick J. Mott; Alan H. Lazarus; Dongji Han; Eugene Maraskovsky; Adrian Zuercher; Anton Neschadim; Danila Leontyev; Brent S. McKenzie; Fabian Käsermann

High-dose i.v. Ig (IVIG) is used to treat various autoimmune and inflammatory diseases; however, the mechanism of action remains unclear. Based on the K/BxN serum transfer arthritis model in mice, IVIG suppression of inflammation has been attributed to a mechanism involving basophils and the binding of highly sialylated IgG Fc to DC-SIGN–expressing myeloid cells. The requirement for sialylation was examined in the collagen Ab-induced arthritis (CAbIA) and K/BxN serum transfer arthritis models in mice. High-dose IVIG (1–2 g/kg body weight) suppressed inflammatory arthritis when given prophylactically. The same doses were also effective in the CAbIA model when given subsequent to disease induction. In this therapeutic CAbIA model, the anti-inflammatory effect of IVIG was dependent on IgG Fc but not F(ab′)2 fragments. Removal of sialic acid residues by neuraminidase had no impact on the anti-inflammatory activity of IVIG or Fc fragments. Treatment of mice with basophil-depleting mAbs did not abrogate the suppression of either CAbIA or K/BxN arthritis by IVIG. Our data confirm the therapeutic benefit of IVIG and IgG Fc in Ab-induced arthritis but fail to support the significance of sialylation and basophil involvement in the mechanism of action of IVIG therapy.


Vaccine | 2002

Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle

Lorenz Scheppler; Monique Vogel; Adrian Zuercher; Michael Zuercher; Jacques-Edouard Germond; Sylvia Miescher; Beda M. Stadler

Lactobacilli are considered to be safe organisms making them attractive as vehicles for oral vaccination. We report that Lactobacillus johnsonii (Lj) partially survived simulated gastric conditions in vitro, suggesting that it could be used as an oral vaccine delivery vehicle. In order to test this approach, we used the cell wall anchored proteinase PrtB, isolated from Lactobacillus delbrueckii subsp. bulgaricus as a model antigen. Using a new vector system, we demonstrated expression of both proteinase PrtB alone and a mimotope peptide derived from tetanus toxin integrated in the sequence of proteinase PrtB (TTmim-PrtB fusion protein) on the surface of Lj. Oral immunisation of mice with recombinant Lj, expressing the TTmim-PrtB fusion protein induced a systemic IgG response against Lj and recombinantly expressed proteinase PrtB but no antibody response against the tetanus toxin mimotope suggesting that the mimotope was not sufficiently immunogenic to induce an immune response. Interestingly, a proteinase PrtB specific fecal IgA response was also induced, indicating that the proteinase PrtB fusion protein expressed as a cell surface protein on Lj can induce both systemic and local mucosal immune responses.


Blood | 2016

Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease

Francesca Vinchi; Milene Costa da Silva; Giada Ingoglia; Sara Petrillo; Nathan Brinkman; Adrian Zuercher; Adelheid Cerwenka; Emanuela Tolosano; Martina U. Muckenthaler

Hemolytic diseases, such as sickle cell anemia and thalassemia, are characterized by enhanced release of hemoglobin and heme into the circulation, heme-iron loading of reticulo-endothelial system macrophages, and chronic inflammation. Here we show that in addition to activating the vascular endothelium, hemoglobin and heme excess alters the macrophage phenotype in sickle cell disease. We demonstrate that exposure of cultured macrophages to hemolytic aged red blood cells, heme, or iron causes their functional phenotypic change toward a proinflammatory state. In addition, hemolysis and macrophage heme/iron accumulation in a mouse model of sickle disease trigger similar proinflammatory phenotypic alterations in hepatic macrophages. On the mechanistic level, this critically depends on reactive oxygen species production and activation of the Toll-like receptor 4 signaling pathway. We further demonstrate that the heme scavenger hemopexin protects reticulo-endothelial macrophages from heme overload in heme-loaded Hx-null mice and reduces production of cytokines and reactive oxygen species. Importantly, in sickle mice, the administration of human exogenous hemopexin attenuates the inflammatory phenotype of macrophages. Taken together, our data suggest that therapeutic administration of hemopexin is beneficial to counteract heme-driven macrophage-mediated inflammation and its pathophysiologic consequences in sickle cell disease.


Antimicrobial Agents and Chemotherapy | 2010

Preclinical In Vitro and In Vivo Characterization of the Fully Human Monoclonal IgM Antibody KBPA101 Specific for Pseudomonas aeruginosa Serotype IATS-O11

Michael P. Horn; Adrian Zuercher; Martin A. Imboden; Michael P. Rudolf; Hedvika Lazar; Hong Wu; Niels Høiby; Stefanie Fas; Alois B. Lang

ABSTRACT Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide-toxin A conjugate vaccine to generate human hybridoma cell lines producing monoclonal antibodies specific for individual P. aeruginosa lipopolysaccharide serotypes. The fully human monoclonal antibody secreted by one of these lines, KBPA101, is an IgM/κ antibody that binds P. aeruginosa of International Antigenic Typing System (IATS) serotype O11 with high avidity (5.81 × 107 M−1 ± 2.8 × 107 M−1) without cross-reacting with other serotypes. KBPA101 specifically opsonized the P. aeruginosa of IATS O11 serotype and mediated complement-dependent phagocytosis in vitro by the human monocyte-like cell line HL-60 at a very low concentration (half-maximal phagocytosis at 0.16 ng/ml). In vivo evaluation of KBPA101 demonstrated a dose-response relationship for protection against systemic infections in a murine burn wound sepsis model, where 70 to 100% of animals were protected against lethal challenges with P. aeruginosa at doses as low as 5 μg/animal. Furthermore, a high efficacy of KBPA101 in protection from local respiratory infections in an acute lung infection model in mice was demonstrated. Preclinical toxicology evaluation on human tissue, in rabbits, and in mice did not indicate any toxicity of KBPA101. Based on these preclinical findings, the first human clinical trials have been initiated.


PLOS ONE | 2012

Perinatal Maternal Administration of Lactobacillus paracasei NCC 2461 Prevents Allergic Inflammation in a Mouse Model of Birch Pollen Allergy

Irma Schabussova; Karin Hufnagl; Mimi L.K. Tang; Elisabeth Hoflehner; Angelika Wagner; Gerhard Loupal; Sophie Nutten; Adrian Zuercher; Annick Mercenier; Ursula Wiedermann

BACKGROUND The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. METHODS BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. RESULTS Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. CONCLUSION Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring by activating regulatory pathways, likely through TLR2/4 signalling.


Antimicrobial Agents and Chemotherapy | 2009

Pharmacokinetics and Safety Profile of the Human Anti-Pseudomonas aeruginosa Serotype O11 Immunoglobulin M Monoclonal Antibody KBPA-101 in Healthy Volunteers

Hedvika Lazar; Michael P. Horn; Adrian Zuercher; Martin A. Imboden; Peter Durrer; Michael Seiberling; Rolf Pokorny; Christophe Hammer; Alois B. Lang

ABSTRACT KBPA-101 is a human monoclonal antibody of the immunoglobulin M isotype, which is directed against the O-polysaccharide moiety of Pseudomonas aeruginosa serotype O11. This double-blind, dose escalation study evaluated the safety and pharmacokinetics of KBPA-101 in 32 healthy volunteers aged 19 to 46 years. Each subject received a single intravenous infusion of KBPA-101 at a dose of 0.1, 0.4, 1.2, or 4 mg/kg of body weight or placebo infused over 2 h. Plasma samples for pharmacokinetic assessments were taken before infusion as well as 0.25, 0.5, 1, 2, 2.5, 4, 6, 8, 12, 24, 36, and 48 h and 4, 7, 10, and 14 days after start of dosing. Plasma concentrations of KBPA-101 were detected with mean maximum concentrations of drug in plasma of 1,877, 7,571, 24,923, and 83,197 ng/ml following doses of 0.1, 0.4, 1.2, and 4.0 mg/kg body weight, respectively. The mean elimination half-life was between 70 and 95 h. The mean volume of distribution was between 4.76 and 5.47 liters. Clearance ranged between 0.039 and 0.120 liters/h. At the highest dose of 4.0 mg/kg, plasma KBPA-101 levels were greater than 5,000 ng/ml for 14 days. KBPA-101 exhibited linear kinetics across all doses. No anti-KBPA-101 antibodies were detected after dosing in any subject. Overall, the human monoclonal antibody KBPA-101 was well tolerated over the entire dose range in healthy volunteers, and no serious adverse events have been reported.


Autoimmunity Reviews | 2016

IVIG in autoimmune disease - Potential next generation biologics.

Adrian Zuercher; Rolf Spirig; Adriana Baz Morelli; Fabian Käsermann

Polyclonal plasma-derived IgG is a mainstay therapeutic of immunodeficiency disorders as well as of various inflammatory autoimmune diseases. In immunodeficiency the primary function of IVIG/SCIG is to replace missing antibody specificities, consequently a diverse Fab-based repertoire is critical for efficacy. Attempts to capture the Ig repertoire and express it as a recombinant IVIG product are currently ongoing. Likewise correction of the defective genes by gene therapy has also been tried. However, both approaches are far from becoming mainstream treatments. In contrast, some of the most important effector mechanisms relevant in therapy of autoimmunity are based on the Fc-portion of IgG; they include scavenging of complement and blockade/modulation of IgG receptors (Fc gamma receptor [FcγR] or the neonatal Fc receptor [FcRn]). These effects might be achieved with appropriately formulated Fc-fragments instead of full-length IgG, as suggested by a pilot study with monomeric plasma-derived Fc in children with ITP and in Kawasaki disease in the 1990s. Since then it has been proposed that structured multimerization of Fc fragments might confer efficacy at much lower doses than with IVIG. Accordingly, various molecular strategies are currently being explored to achieve controlled Fc multimerization, e.g. by fusion of IgG1 Fc to the IgG2 hinge-region or to the IgM tail-piece. Safety considerations will be crucial in the evaluation of these new entities. In a different approach, mutant Fc fragments and monoclonal antibodies have been designed for blockade of the FcRn.


Journal of Biological Chemistry | 2013

Human Plasma-derived Polymeric IgA and IgM Antibodies Associate with Secretory Component to Yield Biologically Active Secretory-like Antibodies

Stéphanie Longet; Sarah Miled; Marius Lötscher; Sylvia Miescher; Adrian Zuercher; Blaise Corthésy

Background: Production of SIgA or SIgM for therapeutic application remains an unsolved issue. Results: Human plasma-derived polyclonal, polymeric IgA and IgM associate with recombinant or colostrum-derived human secretory component to form digestion-resistant, functionally active SIgA- and SIgM-like molecules. Conclusion: SIgA and SIgM can be rebuilt ex vivo from plasma-derived IgA/IgM. Significance: This would enable development of SIgA/SIgM-based mucosal therapeutics. Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.

Collaboration


Dive into the Adrian Zuercher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alois B. Lang

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge