Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Zumsteg is active.

Publication


Featured researches published by Adrian Zumsteg.


Journal of Experimental Medicine | 2005

Identification of proteoglycans as the APRIL-specific binding partners

Karine Ingold; Adrian Zumsteg; Aubry Tardivel; Bertrand Huard; Quynh-Giao Steiner; Teresa G. Cachero; Fang Qiang; Leonid Gorelik; Susan L. Kalled; Hans Acha-Orbea; Paul D. Rennert; Jürg Tschopp; Pascal Schneider

B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors—transmembrane activator and calcium signal–modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)—that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific “receptor.” This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRILs basic sequence. Moreover, syndecan-1–positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.


PLOS ONE | 2009

Myeloid cells contribute to tumor lymphangiogenesis.

Adrian Zumsteg; Vanessa Baeriswyl; Natsuko Imaizumi; Reto A. Schwendener; Curzio Rüegg; Gerhard Christofori

The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.


eLife | 2014

In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes

Weida Li; Mio Nakanishi; Adrian Zumsteg; Matthew Shear; Christopher V.E. Wright; Douglas A. Melton; Qiao Zhou

Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin+ β-cells, glucagon+ α-cells, and somatostatin+ δ-cells. We previously reported that a combination of three transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo. DOI: http://dx.doi.org/10.7554/eLife.01846.001


Journal of Biological Chemistry | 2003

Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene.

David J. Fraser; Adrian Zumsteg; Urs A. Meyer

Nuclear receptors have been implicated in the transcriptional regulation of expression of a growing number of genes, including cytochromes P450 and 5-aminolevulinate synthase (ALAS1), the first and rate-limiting enzyme in the heme biosynthesis pathway. Although drugs that induce cytochromes P450 also induce ALAS1, the regulatory mechanisms governing these pathways have not been fully elucidated. We have identified a drug-responsive enhancer in the murine ALAS1 gene. This sequence mediates transcriptional activation by a wide range of compounds including typical cytochrome P450 pan-inducers phenobarbital and metyrapone, as well as specific activators of the pregnane X receptor and the constitutive androstane receptor. ALAS1 drug-responsive enhancer sequences were identified by transient transfection of reporter gene constructs in the drug-responsive leghorn male hepatoma cell line. Using the NUBIScan algorithm, DR4 nuclear receptor binding sites were identified within the elements and their roles in mediating transcriptional activation of ALAS1 were confirmed by site-directed mutagenesis. Electrophoretic mobility shift assays demonstrate clear interactions of mouse pregnane X receptor and constitutive androstane receptor on the ADRES. Transactivation assays in CV-1 cells implicate the nuclear receptors as major contributors to transcriptional activation of ALAS1. Moreover, in vivo studies in knock-out animals confirm the induction of ALAS1 is mediated at least in part by nuclear receptors. These studies are the first to explain drug induction via drug response elements for mammalian ALAS1.


Molecular Cancer Therapeutics | 2009

Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis

Tibor Schomber; Adrian Zumsteg; Karin Strittmatter; Ivana Crnic; Helena Antoniadis; Amanda Littlewood-Evans; Jeanette Marjorie Wood; Gerhard Christofori

Halting tumor growth by interfering with tumor-induced angiogenesis is an attractive therapeutic approach. Such treatments include humanized antibodies blocking the activity of vascular endothelial growth factor (VEGF)-A (bevacizumab), soluble VEGF receptor (VEGFR) constructs (VEGF-Trap), or small-molecule inhibitors of VEGFR signaling, including PTK787/ZK222584 (PTK/ZK), sorafenib, and sunitinib. PTK/ZK has been shown previously to specifically block VEGF-induced phosphorylation of VEGFR-1, -2 and -3 and thereby to inhibit endothelial cell proliferation, differentiation, and tumor angiogenesis. We have investigated the effect of PTK/ZK on tumor angiogenesis and tumor lymphangiogenesis using the Rip1Tag2 transgenic mouse model of pancreatic β cell carcinogenesis. In Rip1Tag2 mice, tumor angiogenesis is predominantly mediated by VEGF-A, and as expected, PTK/ZK efficiently impaired tumor blood vessel angiogenesis and tumor growth. Double-transgenic Rip1Tag2;Rip1VEGF-C and Rip1Tag2;Rip1VEGF-D mice not only exhibit VEGF-A-dependent blood vessel angiogenesis but also tumor lymphangiogenesis induced by the transgenic expression of VEGF-C or -D. In these mouse models, PTK/ZK also repressed tumor blood vessel angiogenesis and tumor growth yet failed to affect tumor lymphangiogenesis and lymphogenic metastasis. Adenoviral delivery of soluble VEGFR-3 also did not prevent tumor lymphangiogenesis in these mice. In contrast, spontaneous tumor lymphangiogenesis, as observed by the stochastic expression of VEGF-C and -D in tumors of neural cell adhesion molecule-deficient Rip1Tag2 mice, was repressed by PTK/ZK and soluble VEGFR-3. The results indicate that the time of onset and the levels of VEGF-C/D expression may be critical variables in efficiently repressing tumor lymphangiogenesis and that pathways other than VEGFR signaling may be involved in tumor lymphangiogenesis. [Mol Cancer Ther 2009;8(1):55–63]


Cold Spring Harbor Perspectives in Medicine | 2012

Myeloid Cells and Lymphangiogenesis

Adrian Zumsteg; Gerhard Christofori

The lymphatic vascular system and the hematopoietic system are intimately connected in ontogeny and in physiology. During embryonic development, mammalian species derive a first lymphatic vascular plexus from the previously formed anterior cardinal vein, whereas birds and amphibians have a lymphatic vascular system of dual origin, composed of lymphatic endothelial cells (LECs) of venous origin combined with LECs derived from mesenchymal lymphangioblasts. The contribution of hematopoietic cells as building blocks of nascent lymphatic structures in mammals is still under debate. In contrast, the importance of myeloid cells to direct lymphatic vessel growth and function postnatally has been experimentally shown. For example, myeloid cells communicate with LECs via paracrine factors or cell-cell contacts, and they also can acquire lymphatic endothelial morphology and marker gene expression, a process reminiscent of developmental vasculogenesis. Here, we present an overview of the current understanding of how lymphatic vessels and the hematopoietic system, in particular myeloid cells, interact during embryonic development, in normal organ physiology, and in disease.


Diabetologia | 2016

Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice

Claudia Cavelti-Weder; Weida Li; Adrian Zumsteg; Marianne Stemann-Andersen; Yuemei Zhang; Takatsugu Yamada; Max Wang; Jiaqi Lu; Agnes Jermendy; Yong Mong Bee; Susan Bonner-Weir; Gordon C. Weir; Qiao Zhou

Aims/hypothesisReprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined.MethodsHere, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors.ResultsWe observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue’s response to clear the pancreas from insufficiently reprogrammed cells.Conclusions/interpretationOur findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications.


Clinical Cancer Research | 2015

Nintedanib is a highly effective therapeutic for neuroendocrine carcinoma of the pancreas (PNET) in the Rip1Tag2 transgenic mouse model

Ruben Bill; Ernesta Fagiani; Adrian Zumsteg; Helena Antoniadis; David Johansson; Simon Haefliger; Imke Albrecht; Frank Hilberg; Gerhard Christofori

Purpose: Pancreatic neuroendocrine tumors (PNET) represent a rare but challenging heterogeneous group of cancers with an increasing incidence over the last number of decades. Herein, we report an in-depth evaluation of the new antiangiogenic small-molecule tyrosine kinase inhibitor (TKI) nintedanib in the preclinical Rip1Tag2 transgenic mouse model of neuroendocrine carcinoma of the pancreas (insulinoma). Experimental Design: We have assessed the antiangiogenic and antitumor activity of nintedanib, in comparison with other antiangiogenic TKI, by treating Rip1Tag2 transgenic mice with different treatment schedules complemented with histopathologic, cell biologic, and biochemical analyses. Results: Prolonged nintedanib treatment of Rip1Tag2 mice has led to a strong suppression of angiogenesis, accompanied by a reduced tumor burden, which translated into a significant prolongation of survival. Despite nintedanibs inhibitory action on perivascular cells, the blood vessels remaining after therapy displayed a considerably mature phenotype with tight perivascular cell coverage and preserved perfusion. Nintedanib treatment did not increase local tumor invasiveness or metastasis to the liver and pancreatic lymph nodes—a phenomenon that has been observed with antiangiogenic treatments of Rip1Tag2 transgenic mice in other laboratories. In contrast with the strong reduction in blood microvessel densities, nintedanib did not have any impact on tumor lymphangiogenesis. Conclusions: Based on our findings, we propose the clinical evaluation of the antiangiogenic drug nintedanib as a new treatment modality for PNET patients, notably in a direct comparison with already established therapeutic regimens, such as sunitinib. Clin Cancer Res; 21(21); 4856–67. ©2015 AACR.


Molecular Cancer Research | 2012

Repression of Malignant Tumor Progression upon Pharmacologic IGF1R Blockade in a Mouse Model of Insulinoma

Adrian Zumsteg; Christoph Caviezel; Laura Pisarsky; Karin Strittmatter; Carlos Garcia-Echeverria; Francesco Hofmann; Gerhard Christofori

NVP-AEW541, a specific ATP-competitive inhibitor of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase, has been reported to interfere with tumor growth in various tumor transplantation models. We have assessed the efficacy of NVP-AEW541 in repressing tumor growth and tumor progression in the Rip1Tag2 transgenic mouse model of pancreatic β-cell carcinogenesis. In addition, we have tested NVP-AEW541 in Rip1Tag2;RipIGF1R double-transgenic mice which show accelerated tumor growth and increased tumor malignancy compared with Rip1Tag2 single-transgenic mice. Previously, we have shown that high levels of IGF-2, a high-affinity ligand for IGF1R, are required for Rip1Tag2 tumor cell survival and tumor growth. Unexpectedly, treatment of Rip1Tag2 mice with NVP-AEW541 in prevention and intervention trials neither did affect tumor growth nor tumor cell proliferation and apoptosis. Yet, it significantly repressed progression to tumor malignancy, that is, the rate of the transition from differentiated adenoma to invasive carcinoma. Treatment of Rip1Tag2;RipIGF1R double-transgenic mice resulted in moderately reduced tumor volumes and increased rates of tumor cell apoptosis. Sustained expression of IGF-2 and of the IGF-2–binding form of insulin receptor (IR-A) in tumor cells suggests a compensatory role of IR-A upon IGF1R blockade. The results indicate that inhibition of IGF1R alone is not sufficient to efficiently block insulinoma growth and imply an overlapping role of IGF1R and insulin receptor in executing mitogenic and survival stimuli elicited by IGF-2. The reduction of tumor invasion upon IGF1R blockade on the other hand indicates a critical function of IGF1R signaling for the acquisition of a malignant phenotype. Mol Cancer Res; 10(6); 800–9. ©2012 AACR.


Current Pathobiology Reports | 2015

Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes.

Claudia Cavelti-Weder; Weida Li; Adrian Zumsteg; Marianne Stemann; Takatsugu Yamada; Susan Bonner-Weir; Gordon C. Weir; Qiao Zhou

Direct reprogramming is a promising approach for regenerative medicine whereby one cell type is directly converted into another without going through a multipotent or pluripotent stage. This reprogramming approach has been extensively explored for the generation of functional insulin-secreting cells from non-beta-cells with the aim of developing novel cell therapies for the treatment of people with diabetes lacking sufficient endogenous beta-cells. A common approach for such conversion studies is the introduction of key regulators that are important in controlling beta-cell development and maintenance. In this review, we will summarize the recent advances in the field of beta-cell reprogramming and discuss the challenges of creating functional and long-lasting beta-cells.

Collaboration


Dive into the Adrian Zumsteg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge