Adriana Andrade Carvalho
Universidade Federal de Sergipe
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adriana Andrade Carvalho.
Journal of Ethnopharmacology | 2011
Kristiana Cerqueira Mousinho; Cecília Carvalho Oliveira; José R.O. Ferreira; Adriana Andrade Carvalho; Hemerson Iury Ferreira Magalhães; Daniel P. Bezerra; Ana Paula Negreiros Nunes Alves; Letícia V. Costa-Lotufo; Cláudia Pessoa; Mayara Patrícia Viana de Matos; Márcio V. Ramos; Manoel Odorico de Moraes
ETHNOPHARMACOLOGICAL RELEVANCE Himatanthus drasticus (Mart.) Plumel - Apocynaceae is a medicinal plant popularly known as Janaguba. Its bark and latex have been used by the public for cancer treatment, among other medicinal uses. However, there is almost no scientific research report on its medicinal properties. AIM OF THE STUDY The aim of this study was to investigate the antitumor effects of Himatanthus drasticus latex proteins (HdLP) in experimental models. MATERIALS AND METHODS The in vitro cytotoxic activity of the HdLP was determined on cultured tumor cells. HdLP was also tested for its ability to induce lysis of mouse erythrocytes. In vivo antitumor activity was assessed in two experimental models, Sarcoma 180 and Walker 256 carcinosarcoma. Additionally, its effects on the immunological system were also investigated. RESULTS HdLP did not show any significant in vitro cytotoxic effect at experimental exposure levels. When intraperitoneally administered, HdLP was active against both in vivo experimental tumors. However, it was inactive by oral administration. The histopathological analysis indicates that the liver and kidney were only weakly affected by HdLP treatment. It was also demonstrated that HdLP acts as an immunomodulatory agent, increasing the production of OVA-specific antibodies. Additionally, it increased relative spleen weight and the incidence of megakaryocyte colonies. CONCLUSION In summary, HdLP has some interesting anticancer activity that could be associated with its immunostimulating properties.
Food Chemistry | 2013
Rosana P. C. Ferraz; Gabriella M.B. Cardoso; Thanany B. da Silva; José Eraldo do N. Fontes; Ana Paula do Nascimento Prata; Adriana Andrade Carvalho; Manoel Odorico de Moraes; Cláudia Pessoa; Emmanoel Vilaça Costa; Daniel P. Bezerra
The aim of this study was to investigate the chemical composition and anticancer effect of the leaf essential oil of Xylopia frutescens in experimental models. The chemical composition of the essential oil was analysed by GC/FID and GC/MS. In vitro cytotoxic activity of the essential oil was determined on cultured tumour cells. In vivo antitumour activity was assessed in Sarcoma 180-bearing mice. The major compounds identified were (E)-caryophyllene (31.48%), bicyclogermacrene (15.13%), germacrene D (9.66%), δ-cadinene (5.44%), viridiflorene (5.09%) and α-copaene (4.35%). In vitro study of the essential oil displayed cytotoxicity on tumour cell lines and showed IC50 values ranging from 24.6 to 40.0 μg/ml for the NCI-H358M and PC-3M cell lines, respectively. In the in vivo antitumour study, tumour growth inhibition rates were 31.0-37.5%. In summary, the essential oil was dominated by sesquiterpene constituents and has some interesting anticancer activity.
Chemistry & Biodiversity | 2013
José Eraldo do N. Fontes; Rosana P. C. Ferraz; Anny Caroline Siqueira Britto; Adriana Andrade Carvalho; Manoel Odorico de Moraes; Cláudia Pessoa; Emmanoel Vilaça Costa; Daniel P. Bezerra
Guatteria pogonopus Martius, a plant belonging to the Annonaceae family, is found in the remaining Brazilian Atlantic Forest. In this study, the chemical composition and antitumor effects of the essential oil isolated from leaves of G. pogonopus was investigated. The chemical composition of the oil was determined by GC‐FID and GC/MS analyses. The in vitro cytotoxicity was evaluated against three different tumor cell lines (OVCAR‐8, NCI‐H358M, and PC‐3M), and the in vivo antitumor activity was tested in mice bearing sarcoma 180 tumor. A total of 29 compounds was identified and quantified in the oil. The major compounds were γ‐patchoulene (13.55%), (E)‐caryophyllene (11.36%), β‐pinene (10.37%), germacrene D (6.72%), bicyclogermacrene (5.97%), α‐pinene (5.33%), and germacrene B (4.69%). The essential oil, but neither (E)‐caryophyllene nor β‐pinene, displayed in vitro cytotoxicity against all three tumor cell lines tested. The obtained average IC50 values ranged from 3.8 to 20.8 μg/ml. The lowest and highest values were obtained against the NCI‐H358M and the OVCAR‐8 cell lines, respectively. The in vivo tumor‐growth‐inhibition rates in the tumor‐bearing mice treated with essential oil (50 and 100 mg/kg/d) were 25.3 and 42.6%, respectively. Hence, the essential oil showed significant in vitro and in vivo antitumor activity.
Pharmaceutical Biology | 2012
Bruno C. Cavalcanti; Patrícia Marçal da Costa; Adriana Andrade Carvalho; Felipe A. R. Rodrigues; Rodrigo César das Neves Amorim; Ellen Cristina Costa da Silva; Adrian Martin Pohlit; Letícia V. Costa-Lotufo; Manoel Odorico de Moraes; Cláudia Pessoa
Context: Quassinoids are biologically active secondary metabolites found exclusively in the Simaroubaceae family of plants. These compounds generally present important biological properties, including cytotoxic and antitumor properties. Objective: In the present study, the cytotoxic effects of neosergeolide, a quassinoid isolated from Picrolemma sprucei Hook. f., were evaluated in human promyelocytic leukemia cells (HL-60). Materials and methods: Cytotoxicity and antiproliferative effects were evaluated by the MTT assay, May-Grünwald-Giemsa’s staining, BrdU incorporation test, and flow cytometry procedures. The comet assay and micronuclei analysis were applied to determine the genotoxic and mutagenic potential of neosergeolide. Results: After 24 h exposure, neosergeolide strongly inhibited cancer cell proliferation (IC50 0.1 µM), and its activity seemed to be selective to tumor cells because it had no antiproliferative effect on human peripheral blood mononuclear cells (PBMC) at tested concentrations. Apoptosis was induced at submicromolar concentrations (0.05, 0.1, and 0.2 µM) as evidenced by morphological changes, mitochondrial depolarization, phosphatidylserine externalization, caspases activation, and internucleosomal DNA fragmentation. Additionally, neosergeolide effects were prevented by cyclosporine A (CsA), an inhibitor of the mitochondrial permeability transition (MPT) pore, which reinforced the participation of intrinsic pathways in the apoptotic process induced by this natural quassinoid. Direct DNA damage was further confirmed by comet assay and cytokinesis-block micronucleus test. Discussion and conclusion: The present study provided experimental evidence to support the underlying mechanism of action involved in the neosergeolide-mediated apoptosis. In addition, no antiproliferative effect or DNA damage effect of neosergeolide was evident in PBMC, highlighting its therapeutic potential.
BioMed Research International | 2015
Adriana Andrade Carvalho; Luciana Nalone Andrade; Élida Batista Vieira de Sousa; Damião Pergentino de Sousa
The search for new bioactive substances with anticancer activity and the understanding of their mechanisms of action are high-priorities in the research effort toward more effective treatments for cancer. The phenylpropanoids are natural products found in many aromatic and medicinal plants, food, and essential oils. They exhibit various pharmacological activities and have applications in the pharmaceutical industry. In this review, the anticancer potential of 17 phenylpropanoids and derivatives from essential oils is discussed. Chemical structures, experimental report, and mechanisms of action of bioactive substances are presented.
Journal of Pharmacy and Pharmacology | 2015
Ricardo Guimarães Amaral; Cecília Santos Fonseca; Tayane Kayne Mariano da Silva; Luciana Nalone Andrade; Maria E. França; José Maria Barbosa-Filho; Damião Pergentino de Sousa; Manoel Odorico de Moraes; Cláudia Pessoa; Adriana Andrade Carvalho; Sara Maria Thomazzi
The aim of this study was to investigate the cytotoxic and antitumour effects of the essential oil from the leaves of Mentha x villosa (EOMV) and its main component (rotundifolone).
PLOS ONE | 2017
Rejane P. D. Silva; Bruna Aparecida Souza Machado; Gabriele de Abreu Barreto; Samantha Serra Costa; Luciana Nalone Andrade; Ricardo Guimarães Amaral; Adriana Andrade Carvalho; Francine Ferreira Padilha; Josiane Dantas Viana Barbosa; Marcelo Andres Umsza-Guez
Propolis is known for its biological properties and its preparations have been continuously investigated in an attempt to solve the problem of their standardization, an issue that limits the use of propolis in food and pharmaceutical industries. The aim of this study was to evaluate in vitro antioxidant, antimicrobial, antiparasitic, and cytotoxic effects of extracts of red, green, and brown propolis from different regions of Brazil, obtained by ethanolic and supercritical extraction methods. We found that propolis extracts obtained by both these methods showed concentration-dependent antioxidant activity. The extracts obtained by ethanolic extraction showed higher antioxidant activity than that shown by the extracts obtained by supercritical extraction. Ethanolic extracts of red propolis exhibited up to 98% of the maximum antioxidant activity at the highest extract concentration. Red propolis extracts obtained by ethanolic and supercritical methods showed the highest levels of antimicrobial activity against several bacteria. Most extracts demonstrated antimicrobial activity against Staphylococcus aureus. None of the extracts analyzed showed activity against Escherichia coli or Candida albicans. An inhibitory effect of all tested ethanolic extracts on the growth of Trypanosoma cruzi Y strain epimastigotes was observed in the first 24 h. However, after 96 h, a persistent inhibitory effect was detected only for red propolis samples. Only ethanolic extracts of red propolis samples R01Et.B2 and R02Et.B2 showed a cytotoxic effect against all four cancer cell lines tested (HL-60, HCT-116, OVCAR-8, and SF-295), indicating that red propolis extracts have great cytotoxic potential. The biological effects of ethanolic extracts of red propolis revealed in the present study suggest that red propolis can be a potential alternative therapeutic treatment against Chagas disease and some types of cancer, although high activity of red propolis in vitro needs to be confirmed by future in vivo investigations.
Life Sciences | 2013
Adriana Andrade Carvalho; Patrícia Marçal da Costa; Luciana G. S. Souza; Telma L. G. Lemos; Ana Paula Negreiros Nunes Alves; Cláudia Pessoa; Manoel Odorico de Moraes
AIM The aim of this study was to determine the antimetastatic potential of biflorin using in vivo and in vitro approaches. MAIN METHODS Biflorin was isolated from Capraria biflora collected in Fortaleza, Ceará, Brazil. Adhesion, migration and invasion assays were performed to avail of the antimetastatic potential of this quinone. Experimental metastasis was performed to avail of the antimetastatic potential of bilflorin using in vivo assay. KEY FINDINGS Treatment with biflorin (25 and 50mg/kg/day) was shown to be effective in reducing B16-F10 melanoma metastasis in C57BL/6 mice. The administration of biflorin at 25mg/kg/day intraperitoneally inhibited the formation of metastases by about 57% compared to untreated control animals. When the animals were treated with 50mg/kg/day intraperitoneally, there was a 71% decrease in the number of lung metastases. Morphological assays showed the presence of hemosiderin and erythrocytes in the lung parenchyma, indicating the occurrence of hemorrhage, probably a side effect of biflorin. Biflorin at non-toxic concentrations (0.5, 1.0 and 1.5g/mL) was tested directly on B16-F10 cells in vitro, and it inhibited cell adhesion to type I collagen and cell motility using the wound-healing assay. SIGNIFICANCE These data suggest that biflorin has a promising antimetastatic potential, as shown by its anti-adhesion, anti-migration and anti-invasion properties against a metastatic melanoma cell line. However, further studies are essential to elucidate its mechanism of action.
Molecules | 2015
Luciana Nalone Andrade; Tamires Cardoso Lima; Ricardo Guimarães Amaral; Cláudia Pessoa; Manoel Odorico de Moraes Filho; Bruno Marques Soares; Lázaro Gomes do Nascimento; Adriana Andrade Carvalho; Damião Pergentino de Sousa
Compounds isolated from essential oils play an important role in the prevention and treatment of cancer. Monoterpenes are natural products, and the principal constituents of many essential oils. The aim of this study was to investigate the cytotoxic potential of p-menthane derivatives. Additionally, analogues of perillyl alcohol, a monoterpene with known anticancer activity, were evaluated to identify the molecular characteristics which contribute to their cytotoxicity, which was tested against OVCAR-8, HCT-116, and SF-295 human tumor cell lines, using the MTT assay. The results of this study showed that (−)-perillaldehyde 8,9-epoxide exhibited the highest percentage inhibition of cell proliferation (GI = 96.32%–99.89%). Perillyl alcohol exhibited high cytotoxic activity (90.92%–95.82%), while (+)-limonene 1,2-epoxide (GI = 58.48%–93.10%), (−)-perillaldehyde (GI = 59.28%–83.03%), and (−)-8-hydroxycarvotanacetone (GI = 61.59%–94.01%) showed intermediate activity. All of the compounds tested were less cytotoxic than perillyl alcohol, except (−)-perillaldehyde 8,9-epoxide (IC50 = 1.75–1.03 µL/mg). In general, replacement of C-C double bonds by epoxide groups in addition to the aldehyde group increases cytotoxicity. Furthermore, stereochemistry seems to play an important role in cytotoxicity. We have demonstrated the cytotoxic influence of chemical substituents on the p-menthane structure, and analogues of perillyl alcohol.
Clinical and Experimental Pharmacology and Physiology | 2017
Larissa Feitosa Carvalho; Ana Maria F Silva; Adriana Andrade Carvalho
Antineoplastic drugs such as cisplatin, oxaliplatin, paclitaxel and vincristin are widely used in the treatment of several solid and blood tumours. However, the severity of peripheral neuropathy caused by these agents can affect the patients quality of life. The major symptoms of chemotherapy‐induced peripheral neuropathy (CIPN) involve: sensory loss, paresthesia, dysesthaesia, numbness, tingling, temperature sensitivity, allodynia and hyperalgesia, in a “stocking and glove” distribution. Why many different chemotherapeutic agents result in similar neuropathy profiles is unclear. Many drug classes such as antidepressants, anticonvulsants, antispastic agents and others have been used in clinical practice, but there is no scientific evidence to prove their effectiveness. But drugs as the antioxidant have shown a protective effect against free radical damage. In order to find out a successful treatment for CIPN, animal studies (ie pharmacological and mechanical tests and histopathological immunohistochemical analyses) have been developed to try to determinate the action of the antioxidant agents. This review provides an overview of the major antioxidant agents recently investigated to treat CIPN and the animal models used for this purpose.