Adriana Caballero
Rosalind Franklin University of Medicine and Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adriana Caballero.
Brain Structure & Function | 2014
Adriana Caballero; Eden Flores-Barrera; Daryn K. Cass; Kuei Y. Tseng
Determining the normal developmental trajectory of individual GABAergic components in the prefrontal cortex (PFC) during the adolescent transition period is critical because local GABAergic interneurons are thought to play an important role in the functional maturation of cognitive control that occurs in this developmental window. Based on the expression of calcium-binding proteins, three distinctive subtypes of interneurons have been identified in the PFC: parvalbumin (PV)-, calretinin (CR)-, and calbindin (CB)-positive cells. Using biochemical and histochemical measures, we found that the protein level of PV is lowest in juveniles [postnatal days (PD) 25–35] and increases during adolescence (PD 45–55) to levels similar to those observed in adulthood (PD 65–75). In contrast, the protein expression of CR is reduced in adults compared to juvenile and adolescent animals, whereas CB levels remain mostly unchanged across the developmental window studied here. Semi-quantitative immunostaining analyses revealed that the periadolescent upregulation of PV and the loss of the CR signal appear to be attributable to changes in PV- and CR-positive innervation, which are dissociable from the trajectory of PV- and CR-positive cell number. At the synaptic level, our electrophysiological data revealed that a developmental facilitation of spontaneous glutamatergic synaptic inputs onto PV-positive/fast-spiking interneurons parallels the increase in prefrontal PV signal during the periadolescent transition. In contrast, no age-dependent changes in glutamatergic transmission were observed in PV-negative/non fast-spiking interneurons. Together, these findings emphasize that GABAergic inhibitory interneurons in the PFC undergo a dynamic, cell type-specific remodeling during adolescence and provide a developmental framework for understanding alterations in GABAergic circuits that occur in psychiatric disorders.
Biological Psychiatry | 2013
Daryn K. Cass; Daniel R. Thomases; Adriana Caballero; Kuei Y. Tseng
BACKGROUND Drug experimentation during adolescence is associated with increased risk of drug addiction relative to any other age group. To further understand the neurobiology underlying such liability, we investigate how early adolescent cocaine experience impacts medial prefrontal cortex (mPFC) network function in adulthood. METHODS A noncontingent administration paradigm was used to assess the impact of early adolescent cocaine treatment (rats; postnatal days [PD] 35-40) on the overall inhibitory regulation of mPFC activity in adulthood (PD 65-75) by means of histochemical and in vivo electrophysiological measures combined with pharmacologic manipulations. RESULTS Cocaine exposure during early adolescence yields a distinctive hypermetabolic prefrontal cortex state that was not observed in adult-treated rats (PD 75-80). Local field potential recordings revealed that early adolescent cocaine exposure is associated with an attenuation of mPFC gamma-aminobutyric acid (GABA)ergic inhibition evoked by ventral hippocampal stimulation at beta and gamma frequencies that endures throughout adulthood. Such cocaine-induced mPFC disinhibition was not observed in adult-exposed animals. Furthermore, the normal developmental upregulation of parvalbumin immunoreactivity observed in the mPFC from PD 35 to PD 65 is lacking following early adolescent cocaine treatment. CONCLUSIONS Our data indicate that repeated cocaine exposure during early adolescence can elicit a state of mPFC disinhibition resulting from a functional impairment of the local prefrontal GABAergic network that endures through adulthood. A lack of acquisition of prefrontal GABAergic function during adolescence could trigger long-term deficits in the mPFC that may increase the susceptibility for the onset of substance abuse and related psychiatric disorders.
Biological Psychiatry | 2014
Eden Flores-Barrera; Daniel R. Thomases; Li-Jun Heng; Daryn K. Cass; Adriana Caballero; Kuei Y. Tseng
BACKGROUND Refinement of mature cognitive functions, such as working memory and decision making, typically takes place during adolescence. The acquisition of these functions is linked to the protracted development of the prefrontal cortex (PFC) and dopamine facilitation of glutamatergic transmission. However, the mechanisms that support these changes during adolescence remain elusive. METHODS Electrophysiological recordings (in vitro and in vivo) combined with pharmacologic manipulations were employed to determine how N-methyl-D-aspartate transmission in the medial PFC changes during the adolescent transition to adulthood. The relative contribution of GluN2B transmission and its modulation by postsynaptic protein kinase A and D1 receptor signaling were determined in two distinct age groups of rats: postnatal day (P)25 to P40 and P50 to P80. RESULTS We found that only N-methyl-D-aspartate receptor transmission onto the apical dendrite of layer V pyramidal neurons undergoes late adolescent remodeling due to a functional emergence of GluN2B function after P40. Both protein kinase A and dopamine D1 receptor signaling are required for the functional expression of GluN2B transmission and to sustain PFC plasticity in response to ventral hippocampal, but not basolateral amygdala, inputs. CONCLUSIONS Thus, the late adolescent acquisition of GluN2B function provides a mechanism for dopamine D1-mediated regulation of PFC responses in an input-specific manner.
Neuroscience & Biobehavioral Reviews | 2016
Adriana Caballero; Rachel Granberg; Kuei Y. Tseng
Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses. Studies in animal models allow us to test the causal contribution of specific neural processes in the development of the prefrontal cortex and the acquisition of adult behavior. This review summarizes the cellular and synaptic mechanisms occurring in the rodent prefrontal cortex during adolescence as a model for understanding the changes underlying human prefrontal development.
Frontiers in Pharmacology | 2012
Adriana Caballero; Kuei Yuan Tseng
The cannabinoid receptor 1 (CB1R) is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that activate CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.g., memory loss, cognitive deficits, etc). In the context of this review, we present evidence for the role of CB1R signaling in the prefrontal cortex (PFC), an area involved in executive functions, with emphasis on the developmental regulation of CB1R signaling in the acquisition of mature PFC function. We further hypothesize how alterations in CB1R signaling specifically during adolescent maturation might confer liability to psychiatric disorders.
PLOS ONE | 2011
Kuei Y. Tseng; Adriana Caballero; Alexander Dec; Daryn K. Cass; Natalie Simak; Elizabeth Sunu; Michael J. Park; Shannon R. Blume; Stephen Sammut; Diana J. Park; Anthony R. West
Objective There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinsons disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD. Methods The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP. Results We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP. Interpretation Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD.
Psychopharmacology | 2014
Adriana Caballero; Daniel R. Thomases; Eden Flores-Barrera; Daryn K. Cass; Kuei Y. Tseng
ObjectiveThe prefrontal cortex (PFC) receives multiple cortical and subcortical afferents that regulate higher order cognitive functions, many of which emerge late in adolescence. However, it remains unclear how these afferents influence PFC processing, especially in light of the protracted, late adolescent maturation of prefrontal GABAergic function. Here we investigated the role of PFC GABAergic transmission in regulating plasticity elicited from the ventral hippocampus and basolateral amygdala, and how such modulation undergoes functional changes during adolescence in rats.MethodsIn vivo local field potential recordings, combined with prefrontal microinfusion of the GABA-A receptor antagonist picrotoxin, were employed to study the impact of ventral hippocampal and basolateral amygdala high-frequency stimulation on PFC plasticity.ResultsVentral hippocampal-induced PFC plasticity begins to appear only by postnatal days (P) 45–55 with a transient suppression of the evoked response. A switch from transient to long-lasting depression (LTD) of the PFC response emerges after P55 and throughout adulthood (P65–120). Recordings conducted in the presence of picrotoxin revealed that PFC GABAergic transmission is critical for the expression of LTD. In contrast, basolateral amygdala stimulation resulted in PFC long-term potentiation, a form of plasticity that is already enabled by P30 and is insensitive to picrotoxin.ConclusionsThe development of ventral hippocampal-dependent PFC LTD is contingent upon the recruitment of local prefrontal GABAergic transmission during adolescence whereas plasticity elicited from the basolateral amygdala is not. Thus, different mechanisms contribute to the refinement of prefrontal plasticity during adolescence as inputs from these two regions are critical for shaping PFC functions.
The Journal of Neuroscience | 2014
Daniel R. Thomases; Daryn K. Cass; Jacqueline D. Meyer; Adriana Caballero; Kuei Y. Tseng
The adolescent susceptibility to the onset of psychiatric disorders is only beginning to be understood when factoring in the development of the prefrontal cortex (PFC). The functional maturation of the PFC is dependent upon proper integration of glutamatergic inputs from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA). Here we assessed how transient NMDAR blockade during adolescence alters the functional interaction of vHipp–BLA inputs in regulating PFC plasticity. Local field potential recordings were used to determine changes in long-term depression (LTD) and long-term potentiation (LTP) of PFC responses resulting from vHipp and BLA high-frequency stimulation in adult rats that received repeated injections of saline or the NMDAR antagonist MK-801 from postnatal day 35 (P35) to P40. We found that early adolescent MK-801 exposure elicited an age- and input-specific dysregulation of vHipp–PFC plasticity, characterized by a shift from LTD to LTP without altering the BLA-induced LTP. Data also showed that the vHipp normally resets the LTP state of BLA transmission; however, this inhibitory regulation is absent following early adolescent MK-801 treatment. This deficit was reminiscent of PFC responses seen in drug-naive juveniles. Notably, local prefrontal upregulation of GABAAα1 function completely restored vHipp functionality and its regulation of BLA plasticity in MK-801-treated rats. Thus, NMDAR signaling is critical for the periadolescent acquisition of a GABA-dependent hippocampal control of PFC plasticity, which enables the inhibitory control of the prefrontal output by the vHipp. A dysregulation of this pathway can alter PFC processing of other converging afferents such as those from the BLA.
Trends in Neurosciences | 2016
Adriana Caballero; Kuei Y. Tseng
Adolescence is a vulnerable period for the onset of mental illnesses including schizophrenia and affective disorders, yet the neurodevelopmental processes underlying this vulnerability remain poorly understood. The prefrontal cortex (PFC) and its local GABAergic system are thought to contribute to the core of cognitive deficits associated with such disorders. However, clinical and preclinical end-point analyses performed in adults are likely to give limited insight into the cellular mechanisms that are altered during adolescence but are only manifested in adulthood. This perspective summarizes work regarding the developmental trajectories of the GABAergic system in the PFC during adolescence to provide an insight into the increased susceptibility to psychiatric disorders during this critical developmental period.
Hippocampus | 2013
Adriana Caballero; Kimberly C. Diah; Kuei Y. Tseng
Animal studies have highlighted the role of the ventral hippocampus‐prefrontal cortex pathway in the acquisition of mature cortical function through refinement of GABAergic circuits during adolescence. Inhibitory GABAergic responses are mediated by highly specialized interneurons, which have distinct functional properties and are characterized by the expression of calcium binding proteins. Among these, we recently found that parvalbumin (PV)‐ and calretinin (CR)‐positive interneurons in the prefrontal cortex follow opposite developmental trajectories during the periadolescent transition period. In the present study, we asked whether interneurons expressing PV and CR in the ventral hippocampus follow similar periadolescent trajectories as seen in the prefrontal cortex. By measuring the relative abundance of these interneurons in three age groups (postnatal days (PD) 25–40, 45–55, and 60–85), we found that regions within the dorso‐ventral axis of the ventral hippocampus undergo distinct developmental trajectories in PV expression during the periadolescent transition. Specifically, the ventral subiculum displayed a dramatic increase in PV‐positive interneurons from PD25–40 to PD45–55 with an increasing rostro‐caudal gradient, whereas negligible changes were found in the dorsal and middle regions. In contrast, the number of CR‐positive interneurons in the ventral hippocampus remained unchanged across the three age groups studied. Together, these results describe for the first time that GABAergic circuits in the ventral hippocampus undergo protracted development during adolescence, in particular the PV‐positive cell population circumscribed to the ventral region of the ventral hippocampus.