Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Di Martino is active.

Publication


Featured researches published by Adriana Di Martino.


American Journal of Psychiatry | 2012

Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies.

Samuele Cortese; Clare Kelly; Camille Chabernaud; Erika Proal; Adriana Di Martino; Michael P. Milham; F. Xavier Castellanos

OBJECTIVE The authors performed a comprehensive meta-analysis of task-based functional MRI studies of attention deficit hyperactivity disorder (ADHD). METHOD The authors searched PubMed, Ovid, EMBASE, Web of Science, ERIC, CINAHAL, and NeuroSynth for studies published through June 30, 2011. Significant differences in brain region activation between individuals with ADHD and comparison subjects were detected using activation likelihood estimation meta-analysis. Dysfunctional regions in ADHD were related to seven reference neuronal systems. The authors performed a set of meta-analyses focused on age groups (children and adults), clinical characteristics (history of stimulant treatment and presence of psychiatric comorbidities), and specific neuropsychological tasks (inhibition, working memory, and vigilance/attention). RESULTS Fifty-five studies were included (39 for children and 16 for adults). In children, hypoactivation in ADHD relative to comparison subjects was observed mostly in systems involved in executive function (frontoparietal network) and attention (ventral attentional network). Significant hyperactivation in ADHD relative to comparison subjects was observed predominantly in the default, ventral attention, and somatomotor networks. In adults, ADHD-related hypoactivation was predominant in the frontoparietal system, while ADHD-related hyperactivation was present in the visual, dorsal attention, and default networks. Significant ADHD-related dysfunction largely reflected task features and was detected even in the absence of comorbid mental disorders or a history of stimulant treatment. CONCLUSIONS A growing literature provides evidence of ADHD-related dysfunction in multiple neuronal systems involved in higher-level cognitive functions but also in sensorimotor processes, including the visual system, and in the default network. This meta-analytic evidence extends early models of ADHD pathophysiology that were focused on prefrontal-striatal circuits.


Biological Psychiatry | 2005

Varieties of Attention-Deficit/Hyperactivity Disorder-Related Intra-Individual Variability

F. Xavier Castellanos; Edmund Sonuga-Barke; Anouk Scheres; Adriana Di Martino; Christopher Hyde; Judith R. Walters

Intra-individual variability in behavior and functioning is ubiquitous among children with attention-deficit/hyperactivity disorder (ADHD), but it has not been systematically examined or integrated within causal models. This article seeks to provide a conceptual, methodologic, and analytic framework as a foundation for future research. We first identify five key research questions and methodologic issues. For illustration, we examine the periodic structure of Eriksen Flanker task reaction time (RT) data obtained from 24 boys with ADHD and 18 age-matched comparison boys. Reaction time variability in ADHD differed quantitatively from control subjects, particularly at a modal frequency around .05 Hz (cycle length approximately 20 sec). These oscillations in RT were unaffected by double-blind placebo and were suppressed by double-blind methylphenidate. Together with converging lines of basic and clinical evidence, these secondary data analyses support the speculative hypothesis that the increased power of multisecond oscillations in ADHD RT data, and by inference, in attentional performance, represents a catecholaminergic deficit in the ability to appropriately modulate such oscillations in neuronal activity. These results highlight the importance of retaining time-series data and quantitatively examining intra-subject measures of variability as a putative endophenotype for ADHD.


Biological Psychiatry | 2009

Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis.

Adriana Di Martino; Kathryn Ross; Lucina Q. Uddin; Andrew B. Sklar; F. Xavier Castellanos; Michael P. Milham

BACKGROUND Functional neuroimaging studies of autism spectrum disorders (ASD) have examined social and nonsocial paradigms, although rarely in the same study. Here, we provide an objective, unbiased survey of functional brain abnormalities in ASD, related to both social and nonsocial processing. METHODS We conducted two separate voxel-wise activation likelihood estimation meta-analyses of 39 functional neuroimaging studies consisting of 24 studies examining social processes (e.g., theory of mind, face perception) and 15 studies examining nonsocial processes (e.g., attention control, working memory). Voxel-wise significance threshold was p<.05, corrected by false discovery rate. RESULTS Compared with neurotypical control (NC) subjects, ASD showed greater likelihood of hypoactivation in two medial wall regions: perigenual anterior cingulate cortex (ACC) in social tasks only and dorsal ACC in nonsocial studies. Further, right anterior insula, recently linked to social cognition, was more likely to be hypoactivated in ASD in the analyses of social studies. In nonsocial studies, group comparisons showed greater likelihood of activation for the ASD group in the rostral ACC region that is typically suppressed during attentionally demanding tasks. CONCLUSIONS Despite substantial heterogeneity of tasks, the rapidly increasing functional imaging literature showed ASD-related patterns of hypofunction and aberrant activation that depended on the specific cognitive domain, i.e., social versus nonsocial. These results provide a basis for targeted extensions of these findings with younger subjects and a range of paradigms, including analyses of default mode network regulation in ASD.


The Journal of Neuroscience | 2010

Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy

Xi-Nian Zuo; Clare Kelly; Adriana Di Martino; Maarten Mennes; Daniel S. Margulies; Saroja Bangaru; Rebecca Grzadzinski; Alan C. Evans; Yufeng Zang; F. Xavier Castellanos; Michael P. Milham

Functional homotopy, the high degree of synchrony in spontaneous activity between geometrically corresponding interhemispheric (i.e., homotopic) regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, despite its prominence, the lifespan development of the homotopic resting-state functional connectivity (RSFC) of the human brain is rarely directly examined in functional magnetic resonance imaging studies. Here, we systematically investigated age-related changes in homotopic RSFC in 214 healthy individuals ranging in age from 7 to 85 years. We observed marked age-related changes in homotopic RSFC with regionally specific developmental trajectories of varying levels of complexity. Sensorimotor regions tended to show increasing homotopic RSFC, whereas higher-order processing regions showed decreasing connectivity (i.e., increasing segregation) with age. More complex maturational curves were also detected, with regions such as the insula and lingual gyrus exhibiting quadratic trajectories and the superior frontal gyrus and putamen exhibiting cubic trajectories. Sex-related differences in the developmental trajectory of functional homotopy were detected within dorsolateral prefrontal cortex (Brodmann areas 9 and 46) and amygdala. Evidence of robust developmental effects in homotopic RSFC across the lifespan should serve to motivate studies of the physiological mechanisms underlying functional homotopy in neurodegenerative and psychiatric disorders.


Frontiers in Systems Neuroscience | 2013

Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data

Damien A. Fair; Joel T. Nigg; Swathi Iyer; Deepti Bathula; Kathryn L. Mills; Nico U.F. Dosenbach; Bradley L. Schlaggar; Maarten Mennes; David Gutman; Saroja Bangaru; Jan K. Buitelaar; Daniel P. Dickstein; Adriana Di Martino; David N. Kennedy; Clare Kelly; Beatriz Luna; Julie B. Schweitzer; Katerina Velanova; Yu Feng Wang; Stewart H. Mostofsky; F. Xavier Castellanos; Michael P. Milham

In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD.


Biological Psychiatry | 2011

Aberrant Striatal Functional Connectivity in Children with Autism

Adriana Di Martino; Clare Kelly; Rebecca Grzadzinski; Xi-Nian Zuo; Maarten Mennes; Maria Angeles Mairena; Catherine Lord; F. Xavier Castellanos; Michael P. Milham

BACKGROUND Models of autism spectrum disorders (ASD) as neural disconnection syndromes have been predominantly supported by examinations of abnormalities in corticocortical networks in adults with autism. A broader body of research implicates subcortical structures, particularly the striatum, in the physiopathology of autism. Resting state functional magnetic resonance imaging has revealed detailed maps of striatal circuitry in healthy and psychiatric populations and vividly captured maturational changes in striatal circuitry during typical development. METHODS Using resting state functional magnetic resonance imaging, we examined striatal functional connectivity (FC) in 20 children with ASD and 20 typically developing children between the ages of 7.6 and 13.5 years. Whole-brain voxelwise statistical maps quantified within-group striatal FC and between-group differences for three caudate and three putamen seeds for each hemisphere. RESULTS Children with ASD mostly exhibited prominent patterns of ectopic striatal FC (i.e., functional connectivity present in ASD but not in typically developing children), with increased functional connectivity between nearly all striatal subregions and heteromodal associative and limbic cortex previously implicated in the physiopathology of ASD (e.g., insular and right superior temporal gyrus). Additionally, we found striatal functional hyperconnectivity with the pons, thus expanding the scope of functional alterations implicated in ASD. Secondary analyses revealed ASD-related hyperconnectivity between the pons and insula cortex. CONCLUSIONS Examination of FC of striatal networks in children with ASD revealed abnormalities in circuits involving early developing areas, such as the brainstem and insula, with a pattern of increased FC in ectopic circuits that likely reflects developmental derangement rather than immaturity of functional circuits.


Frontiers in Neuroscience | 2012

The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry

Kate B. Nooner; Stanley J. Colcombe; Russell H. Tobe; Maarten Mennes; Melissa M. Benedict; Alexis Moreno; Laura J. Panek; Shaquanna Brown; Stephen T. Zavitz; Qingyang Li; Sharad Sikka; David Gutman; Saroja Bangaru; Rochelle Tziona Schlachter; Stephanie M. Kamiel; Ayesha R. Anwar; Caitlin M. Hinz; Michelle S. Kaplan; Anna B. Rachlin; Samantha Adelsberg; Brian Cheung; Ranjit Khanuja; Chao-Gan Yan; Cameron Craddock; V.D. Calhoun; William Courtney; Margaret D. King; Dylan Wood; Christine L. Cox; A. M. Clare Kelly

The National Institute of Mental Health strategic plan for advancing psychiatric neuroscience calls for an acceleration of discovery and the delineation of developmental trajectories for risk and resilience across the lifespan. To attain these objectives, sufficiently powered datasets with broad and deep phenotypic characterization, state-of-the-art neuroimaging, and genetic samples must be generated and made openly available to the scientific community. The enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) is a response to this need. NKI-RS is an ongoing, institutionally centered endeavor aimed at creating a large-scale (N > 1000), deeply phenotyped, community-ascertained, lifespan sample (ages 6–85 years old) with advanced neuroimaging and genetics. These data will be publically shared, openly, and prospectively (i.e., on a weekly basis). Herein, we describe the conceptual basis of the NKI-RS, including study design, sampling considerations, and steps to synchronize phenotypic and neuroimaging assessment. Additionally, we describe our process for sharing the data with the scientific community while protecting participant confidentiality, maintaining an adequate database, and certifying data integrity. The pilot phase of the NKI-RS, including challenges in recruiting, characterizing, imaging, and sharing data, is discussed while also explaining how this experience informed the final design of the enhanced NKI-RS. It is our hope that familiarity with the conceptual underpinnings of the enhanced NKI-RS will facilitate harmonization with future data collection efforts aimed at advancing psychiatric neuroscience and nosology.


Nature Methods | 2013

Imaging human connectomes at the macroscale

R. Cameron Craddock; Saad Jbabdi; Chao-Gan Yan; Joshua T. Vogelstein; F. Xavier Castellanos; Adriana Di Martino; Clare Kelly; Keith Heberlein; Stan Colcombe; Michael P. Milham

At macroscopic scales, the human connectome comprises anatomically distinct brain areas, the structural pathways connecting them and their functional interactions. Annotation of phenotypic associations with variation in the connectome and cataloging of neurophenotypes promise to transform our understanding of the human brain. In this Review, we provide a survey of magnetic resonance imaging–based measurements of functional and structural connectivity. We highlight emerging areas of development and inquiry and emphasize the importance of integrating structural and functional perspectives on brain architecture.


The Journal of Neuroscience | 2009

L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study.

Clare Kelly; Greig I. de Zubicaray; Adriana Di Martino; David A. Copland; Philip T. Reiss; Donald F. Klein; F. Xavier Castellanos; Michael P. Milham; Katie L. McMahon

Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of l-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults. We examined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of l-dopa. Specifically, l-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although l-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.


NeuroImage | 2012

A Convergent Functional Architecture of the Insula Emerges Across Imaging Modalities

Clare Kelly; Roberto Toro; Adriana Di Martino; Christine L. Cox; Pierre Bellec; F. Xavier Castellanos; Michael P. Milham

Empirical evidence increasingly supports the hypothesis that patterns of intrinsic functional connectivity (iFC) are sculpted by a history of evoked coactivation within distinct neuronal networks. This, together with evidence of strong correspondence among the networks defined by iFC and those delineated using a variety of other neuroimaging techniques, suggests a fundamental brain architecture detectable across multiple functional and structural imaging modalities. Here, we leverage this insight to examine the functional organization of the human insula. We parcellated the insula on the basis of three distinct neuroimaging modalities - task-evoked coactivation, intrinsic (i.e., task-independent) functional connectivity, and gray matter structural covariance. Clustering of these three different covariance-based measures revealed a convergent elemental organization of the insula that likely reflects a fundamental brain architecture governing both brain structure and function at multiple spatial scales. While not constrained to be hierarchical, our parcellation revealed a pseudo-hierarchical, multiscale organization that was consistent with previous clustering and meta-analytic studies of the insula. Finally, meta-analytic examination of the cognitive and behavioral domains associated with each of the insular clusters obtained elucidated the broad functional dissociations likely underlying the topography observed. To facilitate future investigations of insula function across healthy and pathological states, the insular parcels have been made freely available for download via http://fcon_1000.projects.nitrc.org, along with the analytic scripts used to perform the parcellations.

Collaboration


Dive into the Adriana Di Martino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maarten Mennes

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Francisco Xavier Castellanos

Nathan Kline Institute for Psychiatric Research

View shared research outputs
Top Co-Authors

Avatar

Xi-Nian Zuo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bharat B. Biswal

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao-Gan Yan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge