Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Di Polo is active.

Publication


Featured researches published by Adriana Di Polo.


Progress in Retinal and Eye Research | 2012

The molecular basis of retinal ganglion cell death in glaucoma.

Mohammadali Almasieh; Ariel Wilson; Barbara Morquette; Jorge L. Cueva Vargas; Adriana Di Polo

Glaucoma is a group of diseases characterized by progressive optic nerve degeneration that results in visual field loss and irreversible blindness. A crucial element in the pathophysiology of all forms of glaucoma is the death of retinal ganglion cells (RGCs), a population of CNS neurons with their soma in the inner retina and axons in the optic nerve. Strategies that delay or halt RGC loss have been recognized as potentially beneficial to preserve vision in glaucoma; however, the success of these approaches depends on an in-depth understanding of the mechanisms that lead to RGC dysfunction and death. In recent years, there has been an exponential increase in valuable information regarding the molecular basis of RGC death stemming from animal models of acute and chronic optic nerve injury as well as experimental glaucoma. The emerging landscape is complex and points at a variety of molecular signals - acting alone or in cooperation - to promote RGC death. These include: axonal transport failure, neurotrophic factor deprivation, toxic pro-neurotrophins, activation of intrinsic and extrinsic apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving reactive glia and loss of synaptic connectivity. Collectively, this body of work has considerably updated and expanded our view of how RGCs might die in glaucoma and has revealed novel, potential targets for neuroprotection.


Nature Medicine | 2008

The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis

Przemyslaw Sapieha; Mirna Sirinyan; David Hamel; Karine Zaniolo; Jean Sébastien Joyal; Jang Hyeon Cho; Jean Claude Honoré; Elsa Kermorvant-Duchemin; Daya R. Varma; Sophie Tremblay; Martin Leduc; Lenka Rihakova; Pierre Hardy; William H. Klein; Xiuqian Mu; Orval Mamer; Pierre Lachapelle; Adriana Di Polo; Christian M. Beauséjour; Gregor Andelfinger; Grant A. Mitchell; Florian Sennlaub; Sylvain Chemtob

Vascularization is essential for tissue development and in restoration of tissue integrity after an ischemic injury. In studies of vascularization, the focus has largely been placed on vascular endothelial growth factor (VEGF), yet other factors may also orchestrate this process. Here we show that succinate accumulates in the hypoxic retina of rodents and, via its cognate receptor G protein–coupled receptor-91 (GPR91), is a potent mediator of vessel growth in the settings of both normal retinal development and proliferative ischemic retinopathy. The effects of GPR91 are mediated by retinal ganglion neurons (RGCs), which, in response to increased succinate levels, regulate the production of numerous angiogenic factors including VEGF. Accordingly, succinate did not have proangiogenic effects in RGC-deficient rats. Our observations show a pathway of metabolite signaling where succinate, acting through GPR91, governs retinal angiogenesis and show the propensity of RGCs to act as sensors of ischemic stress. These findings provide a new therapeutic target for modulating revascularization.


The Journal of Neuroscience | 2009

Excitotoxic Death of Retinal Neurons In Vivo Occurs via a Non-Cell-Autonomous Mechanism

Frédéric Lebrun-Julien; Laure Duplan; Vincent Pernet; Ingrid K. Osswald; Przemyslaw Sapieha; Philippe Bourgeois; Kathleen M. Dickson; Derek Bowie; Philip A. Barker; Adriana Di Polo

The central hypothesis of excitotoxicity is that excessive stimulation of neuronal NMDA-sensitive glutamate receptors is harmful to neurons and contributes to a variety of neurological disorders. Glial cells have been proposed to participate in excitotoxic neuronal loss, but their precise role is defined poorly. In this in vivo study, we show that NMDA induces profound nuclear factor κB (NF-κB) activation in Müller glia but not in retinal neurons. Intriguingly, NMDA-induced death of retinal neurons is effectively blocked by inhibitors of NF-κB activity. We demonstrate that tumor necrosis factor α (TNFα) protein produced in Müller glial cells via an NMDA-induced NF-κB-dependent pathway plays a crucial role in excitotoxic loss of retinal neurons. This cell loss occurs mainly through a TNFα-dependent increase in Ca2+-permeable AMPA receptors on susceptible neurons. Thus, our data reveal a novel non-cell-autonomous mechanism by which glial cells can profoundly exacerbate neuronal death following excitotoxic injury.


Molecular and Cellular Neuroscience | 2003

Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury.

Przemyslaw S. Sapieha; Martin Peltier; Katherine Rendahl; William C. Manning; Adriana Di Polo

Basic fibroblast growth factor (or FGF-2) has been shown to be a potent stimulator of retinal ganglion cell (RGC) axonal growth during development. Here we investigated if FGF-2 upregulation in adult RGCs promoted axon regrowth in vivo after acute optic nerve injury. Recombinant adeno-associated virus (AAV) was used to deliver the FGF-2 gene to adult RGCs providing a sustained source of this neurotrophic factor. FGF-2 gene transfer led to a 10-fold increase in the number of axons that extended past 0.5 mm from the lesion site compared to control nerves. Detection of AAV-mediated FGF-2 protein in injured RGC axons correlated with growth into the distal optic nerve. The response to FGF-2 upregulation was supported by our finding that FGF receptor-1 (FGFR-1) and heparan sulfate (HS), known to be essential for FGF-2 signaling, were expressed by adult rat RGCs. FGF-2 transgene expression led to only transient protection of injured RGCs. Thus the effect of this neurotrophic factor on axon extension could not be solely attributed to an increase in neuronal survival. Our data indicate that selective upregulation of FGF-2 in adult RGCs stimulates axon regrowth within the optic nerve, an environment that is highly inhibitory for regeneration. These results support the hypothesis that key factors involved in axon outgrowth during neural development may promote regeneration of adult injured neurons.


Experimental Neurology | 2010

Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae.

Seiji B. Shibata; Sarah R. Cortez; Lisa A. Beyer; James A. Wiler; Adriana Di Polo; Bryan E. Pfingst; Yehoash Raphael

Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2010

ProNGF induces TNFα-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway

Frédéric Lebrun-Julien; Mathieu J.M. Bertrand; Olivier De Backer; David Stellwagen; Carlos R. Morales; Adriana Di Polo; Philip A. Barker

Neurotrophin binding to the p75 neurotrophin receptor (p75NTR) activates neuronal apoptosis following adult central nervous system injury, but the underlying cellular mechanisms remain poorly defined. In this study, we show that the proform of nerve growth factor (proNGF) induces death of retinal ganglion cells in adult rodents via a p75NTR-dependent signaling mechanism. Expression of p75NTR in the adult retina is confined to Müller glial cells; therefore we tested the hypothesis that proNGF activates a non-cell-autonomous signaling pathway to induce retinal ganglion cell (RGC) death. Consistent with this, we show that proNGF induced robust expression of tumor necrosis factor alpha (TNFα) in Müller cells and that genetic or biochemical ablation of TNFα blocked proNGF-induced death of retinal neurons. Mice rendered null for p75NTR, its coreceptor sortilin, or the adaptor protein NRAGE were defective in proNGF-induced glial TNFα production and did not undergo proNGF-induced retinal ganglion cell death. We conclude that proNGF activates a non-cell-autonomous signaling pathway that causes TNFα-dependent death of retinal neurons in vivo.


Molecular and Cellular Neuroscience | 2005

Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS

Przemyslaw S. Sapieha; Laure Duplan; Noriko Uetani; S. Joly; Michel L. Tremblay; Timothy E. Kennedy; Adriana Di Polo

Recently, receptor protein tyrosine phosphatase-sigma (RPTPsigma) has been shown to inhibit axon regeneration in injured peripheral nerves. Unlike the peripheral nervous system (PNS), central nervous system (CNS) neurons fail to regenerate their axons after injury or in disease. In order to assess the role of RPTPsigma in CNS regeneration, we used the retinocollicular system of adult mice lacking RPTPsigma to evaluate retinal ganglion cell (RGC) axon regrowth after optic nerve lesion. Quantitative analysis demonstrated a significant increase in the number of RGC axons that crossed the glial scar and extended distally in optic nerves from RPTPsigma (-/-) mice compared to wild-type littermate controls. Although we found that RPTPsigma is expressed by adult RGCs in wild-type mice, the retinas and optic nerves of adult RPTPsigma (-/-) mice showed no histological defects. Furthermore, the time-course of RGC death after nerve lesion was not different between knockout and wild-type animals. Thus, enhanced axon regrowth in the absence of RPTPsigma could not be attributed to developmental defects or increased neuronal survival. Finally, we show constitutively elevated activity of mitogen-activated protein kinase (MAPK) and Akt kinase in adult RPTPsigma (-/-) mice retinas, suggesting that these signaling pathways may contribute to promoting RGC axon regrowth following traumatic nerve injury. Our results support a model in which RPTPsigma inhibits axon regeneration in the adult injured CNS.


Molecular and Cellular Neuroscience | 2009

Inhibition of p75NTR in glia potentiates TrkA-mediated survival of injured retinal ganglion cells

Frédéric Lebrun-Julien; Barbara Morquette; Annie Douillette; H. Uri Saragovi; Adriana Di Polo

Little is known about the molecular mechanisms that limit the ability of retinal neurons to respond to neurotrophic factor stimulation following axonal injury. In the adult retina, nerve growth factor (NGF) binds to TrkA (expressed by neurons) and p75(NTR) (expressed by Müller glia), but fails to promote the survival of axotomized retinal ganglion cells (RGCs). We addressed the functional role of TrkA and p75(NTR) in this lack of survival by using peptidomimetic agonistic or antagonistic ligands specific for each receptor. While administration of exogenous NGF failed to rescue axotomized RGCs, administration of selective TrkA agonists led to robust neuroprotection. Surprisingly, we found a remarkable survival of axotomized RGCs following pharmacological inhibition of p75(NTR) or in p75(NTR) knockout mice. Combination of NGF or TrkA agonists with p75(NTR) antagonists further potentiated RGC neuroprotection in vivo, an effect that was greater than each treatment alone. NGF can therefore be neuroprotective when acting on neuronal TrkA receptors but engagement of p75(NTR) on glial cells antagonizes this effect. Our data reveal a novel mechanism by which p75(NTR) expressed on retinal glia can profoundly influence neuronal survival.


Spine | 2007

Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury.

Brian K. Kwon; Jie Liu; Clarrie K. Lam; Ward T. Plunet; Loren W. Oschipok; William W. Hauswirth; Adriana Di Polo; Armin Blesch; Wolfram Tetzlaff

Study Design. Experimental animal study. Objective. To determine if viral vectors carrying the gene for brain-derived neurotrophic factor (BDNF) could be used to promote an axonal regenerative response in rubrospinal neurons after an acute cervical spinal cord injury. Summary of Background Data. Following axotomy in the cervical spinal cord, rubrospinal neurons undergo severe atrophy and fail to up-regulate important genes for regeneration. This can be attenuated or reversed with the infusion of BDNF to the injured cell bodies. This infusion technique, however, causes substantial parenchymal damage around the red nucleus and is limited by occlusion of the infusion pumps. This study examined whether viral vectors could be used to deliver the BDNF gene in a less damaging fashion and whether this could promote a regenerative response in injured rubrospinal neurons. Methods. Following a cervical spinal cord injury, the viral vectors were injected into the vicinity of the injured red nucleus. The extent of parenchymal damage around the red nucleus was assessed, as was the immunoreactivity to BDNF and cellular transfection patterns. Rubrospinal neuronal cross-ectional area was measured to determine if atrophy had been reversed, and in situ hybridization for GAP-43 and T&agr;1 tubulin was performed to determine if there genes, which are important for axonal regeneration, were up-egulated. Results. Parenchymal damage associated with viral injection was significantly less than with previous infusion techniques. BDNF immunoreactivity around the red nucleus indicated that the BDNF transgene was expressed. Both viral vectors reversed rubrospinal neuronal atrophy and promoted the expression of GAP-43 and T&agr;1 tubulin. Conclusions. Viral-ediated transfer of the BDNF gene was successful at promoting a regenerative response in rubrospinal neurons following acute cervical spinal cord injury, with significantly less parenchymal damage than previously observed when infusing the BDNF protein.


Journal of Neurochemistry | 2005

Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo

Vincent Pernet; William W. Hauswirth; Adriana Di Polo

Neurotrophins play important roles in the response of adult neurons to injury. The intracellular signaling mechanisms used by neurotrophins to regulate survival and axon growth in the mature CNS in vivo are not well understood. The goal of this study was to define the role of the extracellular signal‐regulated kinases 1/2 (Erk1/2) pathway in the survival and axon regeneration of adult rat retinal ganglion cells (RGCs), a prototypical central neuron population. We used recombinant adeno‐associated virus (AAV) to selectively transduce RGCs with genes encoding constitutively active or wild‐type mitogen‐activated protein kinase kinase 1 (MEK1), the upstream activator of Erk1/2. In combination with anterograde and retrograde tracing techniques, we monitored neuronal survival and axon regeneration in vivo. MEK1 gene delivery led to robust and selective transgene expression in multiple RGC compartments including cell bodies, dendrites, axons and targets in the brain. Furthermore, MEK1 activation induced in vivo phosphorylation of Erk1/2 in RGC bodies and axons. Quantitative analysis of cell survival demonstrated that Erk1/2 activation promoted robust RGC neuroprotection after optic nerve injury. In contrast, stimulation of the Erk1/2 pathway was not sufficient to induce RGC axon growth beyond the lesion site. We conclude that the Erk1/2 pathway plays a key role in the survival of axotomized mammalian RGCs in vivo, and that activation of other signaling components is required for axon regeneration in the growth inhibitory CNS environment.

Collaboration


Dive into the Adriana Di Polo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Wilson

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Pernet

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge