Adriana Ilie
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adriana Ilie.
Angewandte Chemie | 2016
Aitao Li; Adriana Ilie; Zhoutong Sun; Richard Lonsdale; Jian-He Xu; Manfred T. Reetz
Biocatalytic cascade reactions using isolated stereoselective enzymes or whole cells in one-pot processes lead to value-added chiral products in a single workup. The concept has been restricted mainly to starting materials and intermediate products that are accepted by the respective wild-type enzymes. In the present study, we exploited directed evolution as a means to create E. coli whole cells for regio- and stereoselective cascade sequences that are not possible using man-made catalysts. The approach is illustrated using P450-BM3 in combination with appropriate alcohol dehydrogenases as catalysts in either two-, three-, or four-step cascade reactions starting from cyclohexane, cyclohexanol, or cyclohexanone, respectively, leading to either (R,R)-, (S,S)-, or meso-cyclohexane-1,2-diol. The one-pot conversion of cyclohexane into (R)- or (S)-2-hydroxycyclohexanone in the absence of ADH is also described.
Journal of Organic Chemistry | 2015
Rubén Agudo; Gheorghe-Doru Roiban; Richard Lonsdale; Adriana Ilie; Manfred T. Reetz
P450-BM3 and mutants of this monooxygenase generated by directed evolution are excellent catalysts for the oxidative α-hydroxylation of ketones with formation of chiral acyloins with high regioselectivity (up to 99%) and enantioselectivity (up to 99% ee). This constitutes a new route to a class of chiral compounds that are useful intermediates in the synthesis of many kinds of biologically active compounds.
Nature Communications | 2017
Aitao Li; Binju Wang; Adriana Ilie; Kshatresh Dutta Dubey; Gert Bange; Ivan V. Korendovych; Sason Shaik; Manfred T. Reetz
The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations show that it involves coordination of the substrates N-atom to haem-Fe(II) with electron transfer and concomitant N–O heterolysis liberating an intermediate having a nitrogen radical moiety Fe(III)–N· and a phenoxyl anion. Product formation occurs by bond rotation and H-transfer. Two rationally chosen point mutations cause a notable increase in activity. The results shed light on the prevailing mechanistic uncertainties in human P450-catalysed metabolism of the immunomodulatory drug leflunomide, which likewise undergoes redox-mediated Kemp elimination by P450-BM3. Other isoxazole-based pharmaceuticals are probably also metabolized by a redox mechanism. Our work provides a basis for designing future artificial enzymes.
Journal of the American Chemical Society | 2017
Jian-bo Wang; Adriana Ilie; Shuguang Yuan; Manfred T. Reetz
The possibility of a double Walden inversion mechanism of the fluoracetate dehalogenase FAcD (RPA1163) has been studied by subjecting rac-2-fluoro-2-phenyl acetic acid to the defluorination process. This stereochemical probe led to inversion of configuration in a kinetic resolution with an extremely high selectivity factor (E > 500), showing that the classical mechanism involving SN2 reaction by Asp110 pertains. The high preference for the (S)-substrate is of synthetic value. Wide substrate scope of RPA1163 in such hydrolytic kinetic resolutions can be expected because the reaction of the even more sterically demanding rac-2-fluoro-2-benzyl acetic acid proceeded similarly. Substrate acceptance and stereoselectivity were explained by extensive molecular modeling (MM) and molecular dynamics (MD) computations. These computations were also applied to fluoroacetic acid itself, leading to further insights.
Journal of the American Chemical Society | 2018
Guangyue Li; Marc Garcia-Borràs; Maximilian J. L. J. Fürst; Adriana Ilie; Marco W. Fraaije; K. N. Houk; Manfred T. Reetz
Controlling the regioselectivity of Baeyer-Villiger (BV) reactions remains an ongoing issue in organic chemistry, be it by synthetic catalysts or enzymes of the type Baeyer-Villiger monooxygenases (BVMOs). Herein, we address the challenging problem of switching normal to abnormal BVMO regioselectivity by directed evolution using three linear ketones as substrates, which are not structurally biased toward abnormal reactivity. Upon applying iterative saturation mutagenesis at sites lining the binding pocket of the thermostable BVMO from Thermocrispum municipale DSM 44069 (TmCHMO) and using 4-phenyl-2-butanone as substrate, the regioselectivity was reversed from 99:1 (wild-type enzyme in favor of the normal product undergoing 2-phenylethyl migration) to 2:98 in favor of methyl migration when applying the best mutant. This also stands in stark contrast to the respective reaction using the synthetic reagent m-CPBA, which provides solely the normal product. Reversal of regioselectivity was also achieved in the BV reaction of two other linear ketones. Kinetic parameters and melting temperatures revealed that most of the evolved mutants retained catalytic activity, as well as thermostability. In order to shed light on the origin of switched regioselectivity in reactions of 4-phenyl-2-butanone and phenylacetone, extensive QM/MM and MD simulations were performed. It was found that the mutations introduced by directed evolution induce crucial changes in the conformation of the respective Criegee intermediates and transition states in the binding pocket of the enzyme. In mutants that destabilize the normally preferred migration transition state, a reversal of regioselectivity is observed. This conformational control of regioselectivity overrides electronic control, which normally causes preferential migration of the group that is best able to stabilize positive charge. The results can be expected to aid future protein engineering of BVMOs.
ACS Catalysis | 2016
Zhoutong Sun; Richard Lonsdale; Adriana Ilie; Guangyue Li; Jiahai Zhou; Manfred T. Reetz
Nanoscale | 2014
Patrick Tielmann; Hans Kierkels; Albin Zonta; Adriana Ilie; Manfred T. Reetz
Chemical Communications | 2014
Gheorghe-Doru Roiban; Rubén Agudo; Adriana Ilie; Richard Lonsdale; Manfred T. Reetz
Israel Journal of Chemistry | 2015
Adriana Ilie; Manfred T. Reetz
Chemistry Letters | 2014
Gheorghe-Doru Roiban; Adriana Ilie; Manfred T. Reetz