Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Irimia is active.

Publication


Featured researches published by Adriana Irimia.


Journal of Biological Chemistry | 2005

DNA Adduct Bypass Polymerization by Sulfolobus Solfataricus DNA Polymerase Dpo4: Analysis and Crystal Structures of Multiple Base Pair Substitution and Frameshift Products with the Adduct 1,N2-Ethenoguanine.

Hong Zang; Angela K. Goodenough; Jeong-Yun Choi; Adriana Irimia; Lioudmila V. Loukachevitch; Ivan D. Kozekov; Karen C. Angel; Carmelo J. Rizzo; Martin Egli; F. Peter Guengerich

1,N2-Etheno(ϵ)guanine is a mutagenic DNA lesion derived from lipid oxidation products and also from some chemical carcinogens. Gel electrophoretic analysis of the products of primer extension by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) indicated preferential incorporation of A opposite 3′-(1,N2-ϵ-G)TACT-5′, among the four dNTPs tested individually. With the template 3′-(1,N2-ϵ-G)CACT-5′, both G and A were incorporated. When primer extension was done in the presence of a mixture of all four dNTPs, high pressure liquid chromatography-mass spectrometry analysis of the products indicated that (opposite 3′-(1,N2-ϵ-G)CACT-5′) the major product was 5′-GTGA-3′ and the minor product was 5′-AGTGA-3′. With the template 3′-(1,N2-ϵ-G)TACT-5′, the following four products were identified by high pressure liquid chromatography-mass spectrometry: 5′-AATGA-3′, 5′-ATTGA-3′, 5′-ATGA-3′, and 5′-TGA-3′. An x-ray crystal structure of Dpo4 was solved (2.1 Å) with a primer-template and A placed in the primer to be opposite the 1,N2-ϵ-G in the template 3′-(1,N2-ϵ-G)TACT 5′. The added A in the primer was paired across the template T with classic Watson-Crick geometry. Similar structures were observed in a ternary Dpo4-DNA-dATP complex and a ternary Dpo4-DNA-ddATP complex, with d(d)ATP opposite the template T. A similar structure was observed with a ddGTP adjacent to the primer and opposite the C next to 1,N2-ϵ-G in 3′-(1,N2-ϵ-G)CACT-5′. We concluded that Dpo4 uses several mechanisms, including A incorporation opposite 1,N2-ϵ-G and also a variation of dNTP-stabilized misalignment, to generate both base pair and frameshift mutations.


Journal of Biological Chemistry | 2006

Efficient and High Fidelity Incorporation of Dctp Opposite 7,8-Dihydro-8-Oxodeoxyguanosine by Sulfolobus Solfataricus DNA Polymerase Dpo4

Hong Zang; Adriana Irimia; Jeong-Yun Choi; Karen C. Angel; Lioudmila V. Loukachevitch; Martin Egli; F. P. Guengerich

DNA polymerases insert dATP opposite the oxidative damage product 7,8-dihydro-8-oxodeoxyguanosine (8-oxoG) instead of dCTP, to the extent of >90% with some polymerases. Steady-state kinetics with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4) showed 90-fold higher incorporation efficiency of dCTP > dATP opposite 8-oxoG and 4-fold higher efficiency of extension beyond an 8-oxoG:C pair than an 8-oxoG:A pair. The catalytic efficiency for these events (with dCTP or C) was similar for G and 8-oxoG templates. Mass spectral analysis of extended DNA primers showed ≥95% incorporation of dCTP > dATP opposite 8-oxoG. Pre-steady-state kinetics showed faster rates of dCTP incorporation opposite 8-oxoG than G. The measured Kd,dCTP was 15-fold lower for an oligonucleotide containing 8-oxoG than with G. Extension beyond an 8-oxoG:C pair was similar to G:C and faster than for an 8-oxoG:A pair, in contrast to other polymerases. The Ea for dCTP insertion opposite 8-oxoG was lower than for opposite G. Crystal structures of Dpo4 complexes with oligonucleotides were solved with C, A, and G nucleoside triphosphates placed opposite 8-oxoG. With ddCTP, dCTP, and dATP the phosphodiester bonds were formed even in the presence of Ca2+. The 8-oxoG:C pair showed classic Watson-Crick geometry; the 8-oxoG:A pair was in the syn:anti configuration, with the A hybridized in a Hoogsteen pair with 8-oxoG. With dGTP placed opposite 8-oxoG, pairing was not to the 8-oxoG but to the 5′ C (and in classic Watson-Crick geometry), consistent with the low frequency of this frameshift event observed in the catalytic assays.


Journal of Biological Chemistry | 2007

Sulfolobus solfataricus DNA Polymerase Dpo4 Is Partially Inhibited by “Wobble” Pairing between O6-Methylguanine and Cytosine, but Accurate Bypass Is Preferred

Robert L. Eoff; Adriana Irimia; Martin Egli; F. P. Guengerich

We examined the effect of a single O6-methylguanine (O6-MeG) template residue on catalysis by a model Y family polymerase, Dpo4 from Sulfolobus solfataricus. Mass spectral analysis of Dpo4-catalyzed extension products revealed that the enzyme accurately bypasses O6-MeG, with C being the major product (∼70%) and T or A being the minor species (∼20% or ∼10%, respectively), consistent with steady-state kinetic parameters. Transient-state kinetic experiments revealed that kpol, the maximum forward rate constant describing polymerization, for dCTP incorporation opposite O6-MeG was ∼6-fold slower than observed for unmodified G, and no measurable product was observed for dTTP incorporation in the pre-steady state. The lack of any structural information regarding how O6-MeG paired in a polymerase active site led us to perform x-ray crystallographic studies, which show that “wobble” pairing occurs between C and O6-MeG. A structure containing T opposite O6-MeG was solved, but much of the ribose and pyrimidine base density was disordered, in accordance with a much higher Km,dTTP that drives the difference in efficiency between C and T incorporation. The more stabilized C:O6-MeG pairing reinforces the importance of hydrogen bonding with respect to nucleotide selection within a geometrically tolerant polymerase active site.


Journal of Biological Chemistry | 2007

Hydrogen Bonding of 7,8-Dihydro-8-Oxodeoxyguanosine with a Charged Residue in the Little Finger Domain Determines Miscoding Events in Sulfolobus Solfataricus DNA Polymerase Dpo4.

Robert L. Eoff; Adriana Irimia; Karen C. Angel; Martin Egli; F. Peter Guengerich

Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) has been shown to catalyze bypass of 7,8-dihydro-8-oxodeoxyguanosine (8-oxoG) in a highly efficient and relatively accurate manner. Crystal structures have revealed a potential role for Arg332 in stabilizing the anti conformation of the 8-oxoG template base by means of a hydrogen bond or ion-dipole pair, which results in an increased enzymatic efficiency for dCTP insertion and makes formation of a Hoogsteen pair between 8-oxoG and dATP less favorable. Site-directed mutagenesis was used to replace Arg332 with Ala, Glu, Leu, or His in order to probe the importance of Arg332 in accurate and efficient bypass of 8-oxoG. The double mutant Ala331Ala332 was also prepared to address the contribution of Arg331. Transientstate kinetic results suggest that Glu332 retains fidelity against bypass of 8-oxoG that is similar to wild type Dpo4, a result that was confirmed by tandem mass spectrometric analysis of full-length extension products. A crystal structure of the Dpo4 Glu332 mutant and 8-oxoG:C pair revealed water-mediated hydrogen bonds between Glu332 and the O-8 atom of 8-oxoG. The space normally occupied by Arg332 side chain is empty in the crystal structures of the Ala332 mutant. Two other crystal structures show that a Hoogsteen base pair is formed between 8-oxoG and A in the active site of both Glu332 and Ala332 mutants. These results support the view that a bond between Arg332 and 8-oxoG plays a role in determining the fidelity and efficiency of Dpo4-catalyzed bypass of the lesion.


Journal of Biological Chemistry | 2009

Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-dihydro-8-oxo-2'-deoxyguanosine adduct.

Adriana Irimia; Robert L. Eoff; F. Peter Guengerich; Martin Egli

Human polymerase kappa (hPol κ) is one of four eukaryotic Y-class DNA polymerases and may be an important element in the cellular response to polycyclic aromatic hydrocarbons such as benzo[a]pyrene, which can lead to reactive oxygenated metabolite-mediated oxidative stress. Here, we present a detailed analysis of the activity and specificity of hPol κ bypass opposite the major oxidative adduct 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG). Unlike its archaeal homolog Dpo4, hPol κ bypasses this lesion in an error-prone fashion by inserting mainly dATP. Analysis of transient-state kinetics shows diminished “bursts” for dATP:8-oxoG and dCTP:8-oxoG incorporation, indicative of non-productive complex formation, but dATP:8-oxoG insertion events that do occur are 2-fold more efficient than dCTP:G insertion events. Crystal structures of ternary hPol κ complexes with adducted template-primer DNA reveal non-productive (dGTP and dATP) alignments of incoming nucleotide and 8-oxoG. Structural limitations placed upon the hPol κ by interactions between the N-clasp and finger domains combined with stabilization of the syn-oriented template 8-oxoG through the side chain of Met-135 both appear to contribute to error-prone bypass. Mutating Leu-508 in the little finger domain of hPol κ to lysine modulates the insertion opposite 8-oxoG toward more accurate bypass, similar to previous findings with Dpo4. Our structural and activity data provide insight into important mechanistic aspects of error-prone bypass of 8-oxoG by hPol κ compared with accurate and efficient bypass of the lesion by Dpo4 and polymerase η.


Journal of Biological Chemistry | 2007

Structure and Activity of Y-Class DNA Polymerase Dpo4 from Sulfolobus Solfataricus with Templates Containing the Hydrophobic Thymine Analog 2,4-Difluorotoluene.

Adriana Irimia; Robert L. Eoff; Pradeep S. Pallan; F. Peter Guengerich; Martin Egli

The 2,4-difluorotoluene (DFT) analog of thymine has been used extensively to probe the relative importance of shape and hydrogen bonding for correct nucleotide insertion by DNA polymerases. As far as high fidelity (A-class) polymerases are concerned, shape is considered by some as key to incorporation of A(T) opposite T(A) and G(C) opposite C(G). We have carried out a detailed kinetic analysis of in vitro primer extension opposite DFT-containing templates by the trans-lesion (Y-class) DNA polymerase Dpo4 from Sulfolobus solfataricus. Although full-length product formation was observed, steady-state kinetic data show that dATP insertion opposite DFT is greatly inhibited relative to insertion opposite T (∼5,000-fold). No products were observed in the pre-steady-state. Furthermore, it is noteworthy that Dpo4 strongly prefers dATP opposite DFT over dGTP (∼200-fold) and that the polymerase is able to extend an A:DFT but not a G:DFT pair. We present crystal structures of Dpo4 in complex with DNA duplexes containing the DFT analog, the first for any DNA polymerase. In the structures, template-DFT is either positioned opposite primer-A or -G at the -1 site or is unopposed by a primer base and followed by a dGTP:A mismatch pair at the active site, representative of a -1 frameshift. The three structures provide insight into the discrimination by Dpo4 between dATP and dGTP opposite DFT and its inability to extend beyond a G:DFT pair. Although hydrogen bonding is clearly important for error-free replication by this Y-class DNA polymerase, our work demonstrates that Dpo4 also relies on shape and electrostatics to distinguish between correct and incorrect incoming nucleotide.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Metal-ion dependence of the active-site conformation of the translesion DNA polymerase Dpo4 from Sulfolobus solfataricus

Adriana Irimia; Lioudmila V. Loukachevitch; Robert L. Eoff; F. P. Guengerich; Martin Egli

Crystal structures of a binary Mg2+-form Dpo4-DNA complex with 1,N2-etheno-dG in the template strand as well as of ternary Mg2+-form Dpo4-DNA-dCTP/dGTP complexes with 8-oxoG in the template strand have been determined. Comparison of their conformations and active-site geometries with those of the corresponding Ca2+-form complexes revealed that the DNA and polymerase undergo subtle changes as a result of the catalytically more active Mg2+ occupying both the A and B sites.


Biochemistry | 2006

Calcium is a cofactor of polymerization but inhibits pyrophosphorolysis by the Sulfolobus solfataricus DNA polymerase Dpo4

Adriana Irimia; Hong Zang; Lioudmila V. Loukachevitch; Robert L. Eoff; F. Peter Guengerich; Martin Egli


Archive | 2005

DNA Adduct Bypass Polymerization by Sulfolobus solfataricus DNA Polymerase Dpo4

Hong Zang; Angela K. Goodenough; Jeong-Yun Choi; Adriana Irimia; Lioudmila V. Loukachevitch; Ivan D. Kozekov; Karen C. Angel; Carmelo J. Rizzo; Martin Egli; F. Peter Guengerich


The FASEB Journal | 2009

Structure and activity of human DNA polymerase kappa bypass of 8-oxoG

Robert L. Eoff; Adriana Irimia; Martin Egli; F. P. Guengerich

Collaboration


Dive into the Adriana Irimia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert L. Eoff

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Zang

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge