Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Mercado is active.

Publication


Featured researches published by Adriana Mercado.


Journal of Biological Chemistry | 1999

CLONING AND CHARACTERIZATION OF KCC3 AND KCC4, NEW MEMBERS OF THE CATION-CHLORIDE COTRANSPORTER GENE FAMILY

David B. Mount; Adriana Mercado; Luyan Song; Jason Z. Xu; Alfred L. George; Eric Delpire; Gerardo Gamba

The K+-Cl−cotransporters (KCCs) belong to the gene family of electroneutral cation-chloride cotransporters, which also includes two bumetanide-sensitive Na+-K+-2Cl−cotransporters and a thiazide-sensitive Na+-Cl− cotransporter. We have cloned cDNAs encoding mouse KCC3, human KCC3, and human KCC4, three new members of this gene family. The KCC3 and KCC4 cDNAs predict proteins of 1083 and 1150 amino acids, respectively. The KCC3 and KCC4 proteins are 65–71% identical to the previously characterized transporters KCC1 and KCC2, with which they share a predicted membrane topology. The four KCC proteins differ at amino acid residues within key transmembrane domains and in the distribution of putative phosphorylation sites within the amino- and carboxyl-terminal cytoplasmic domains. The expression of mouse KCC3 in Xenopus laevis oocytes reveals the expected functional characteristics of a K+Cl− cotransporter: Cl−-dependent uptake of86Rb+ which is strongly activated by cell swelling and weakly sensitive to furosemide. A direct functional comparison of mouse KCC3 to rabbit KCC1 indicates that KCC3 has a much greater volume sensitivity. The human KCC3 and KCC4 genes are located on chromosomes 5p15 and 15q14, respectively. Although widely expressed, KCC3 transcripts are the most abundant in heart and kidney, and KCC4 is expressed in muscle, brain, lung, heart, and kidney. The unexpected molecular heterogeneity of K+-Cl− cotransport has implications for the physiology and pathophysiology of a number of tissues.


Nature Genetics | 2002

The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum

Heidi Carmen Howard; David B. Mount; Daniel Rochefort; Nellie Byun; Nicolas Dupré; Jianming Lu; Xuemo Fan; Luyan Song; Jean Baptiste Rivière; Claude Prévost; Jürgen Horst; Alessandro Simonati; Beate Lemcke; Rick Welch; Roger England; Frank Zhan; Adriana Mercado; W. B. Siesser; Alfred L. George; Michael P. McDonald; Jean-Pierre Bouchard; Jean Mathieu; Eric Delpire; Guy A. Rouleau

Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q. The gene SLC12A6 (solute carrier family 12, member 6), which encodes the K+–Cl− transporter KCC3 and maps within the ACCPN candidate region, was screened for mutations in individuals with ACCPN. Four distinct protein-truncating mutations were found: two in the French Canadian population and two in non–French Canadian families. The functional consequence of the predominant French Canadian mutation (2436delG, Thr813fsX813) was examined by heterologous expression of wildtype and mutant KCC3 in Xenopus laevis oocytes; the truncated mutant is appropriately glycosylated and expressed at the cellular membrane, where it is non-functional. Mice generated with a targeted deletion of Slc12a6 have a locomotor deficit, peripheral neuropathy and a sensorimotor gating deficit, similar to the human disease. Our findings identify mutations in SLC12A6 as the genetic lesion underlying ACCPN and suggest a critical role for SLC12A6 in the development and maintenance of the nervous system.


Journal of Biological Chemistry | 2000

Functional Comparison of the K+-Cl−Cotransporters KCC1 and KCC4

Adriana Mercado; Luyan Song; Norma Vázquez; David B. Mount; Gerardo Gamba

The K+-Cl−cotransporters (KCCs) are members of the cation-chloride cotransporter gene family and fall into two phylogenetic subgroups: KCC2 paired with KCC4 and KCC1 paired with KCC3. We report a functional comparison inXenopus oocytes of KCC1 and KCC4, widely expressed representatives of these two subgroups. KCC1 and KCC4 exhibit differential sensitivity to transport inhibitors, such that KCC4 is much less sensitive to bumetanide and furosemide. The efficacy of these anion inhibitors is critically dependent on the concentration of extracellular K+, with much higher inhibition in 50 mm K+ versus 2 mmK+. KCC4 is also uniquely sensitive to 10 mmbarium and to 2 mm trichlormethiazide. Kinetic characterization reveals divergent affinities for K+(K m values of ∼25.5 and 17.5 mm for KCC1 and KCC4, respectively), probably due to variation within the second transmembrane segment. Although the two isoforms have equivalent affinities for Cl−, they differ in the anion selectivity of K+ transport (Cl− > SCN− = Br− > PO4 −3 > I−for KCC1 and Cl− > Br− > PO4 −3 = I− > SCN−for KCC4). Both KCCs express minimal K+-Cl−cotransport under isotonic conditions, with significant activation by cell swelling under hypotonic conditions. The cysteine-alkylating agentN-ethylmaleimide activates K+-Cl− cotransport in isotonic conditions but abrogates hypotonic activation, an unexpected dissociation of N-ethylmaleimide sensitivity and volume sensitivity. Although KCC4 is consistently more volume-sensitive, the hypotonic activation of both isoforms is critically dependent on protein phosphatase 1. Overall, the functional comparison of these cloned K+-Cl− cotransporters reveals important functional, pharmacological, and kinetic differences with both physiological and mechanistic implications.


Molecular Brain Research | 2002

Molecular, functional, and genomic characterization of human KCC2, the neuronal K-Cl cotransporter.

Luyan Song; Adriana Mercado; Norma Vázquez; Qizhi Xie; Reshma R. Desai; Alfred L. George; Gerardo Gamba; David B. Mount

The expression level of the neuronal-specific K-Cl cotransporter KCC2 (SLC12A5) is a major determinant of whether neurons will respond to GABA with a depolarizing, excitatory response or a hyperpolarizing, inhibitory response. In view of the potential role in human neuronal excitability we have characterized the hKCC2 cDNA and gene. The 5.9 kb hKCC2 transcript is specific to brain, and is induced during in vitro differentiation of NT2 teratocarcinoma cells into neuronal NT2-N cells. The 24-exon SLC12A5 gene is on human chromosome 20q13, and contains a polymorphic dinucleotide repeat within intron 1 near a potential binding site for neuron-restrictive silencing factor. Expression of hKCC2 cRNA in Xenopus laevis oocytes results in significant Cl(-)-dependent (86)Rb(+) uptake under isotonic conditions; cell swelling under hypotonic conditions causes a 20-fold activation, which is blocked by the protein phosphatase inhibitor calyculin-A. In contrast, oocytes expressing mouse KCC4 do not mediate isotonic K-Cl cotransport but express much higher absolute transport activity than KCC2 oocytes under hypotonic conditions. Initial and steady state kinetics of hKCC2-injected oocytes were performed in both isotonic and hypotonic conditions, revealing K(m)s for K(+) and Cl(-) of 9.3+/-1.8 mM and 6.8+/-0.9 mM, respectively; both affinities are significantly higher than KCC1 and KCC4. The K(m) for Cl(-) is close to the intracellular Cl(-) activity of mature neurons, as befits a neuronal efflux mechanism.


The Journal of Neuroscience | 2008

Neurogenic role of the depolarizing chloride gradient revealed by global overexpression of KCC2 from the onset of development.

Annie Reynolds; Edna Brustein; Meijiang Liao; Adriana Mercado; Elisa Babilonia; David B. Mount; Pierre Drapeau

GABA- and glycine-induced depolarization is thought to provide important developmental signals, but the role of the underlying chloride gradient has not been examined from the onset of development. We therefore overexpressed globally the potassium–chloride cotransporter 2 (KCC2) in newly fertilized zebrafish embryos to reverse the chloride gradient. This rendered glycine hyperpolarizing in all neurons, tested at the time that motor behaviors (but not native KCC2) first appear. KCC2 overexpression resulted in fewer mature spontaneously active spinal neurons, more immature silent neurons, and disrupted motor activity. We observed fewer motoneurons and interneurons, a reduction in the elaboration of axonal tracts, and smaller brains and spinal cords. However, we observed no increased apoptosis and a normal complement of sensory neurons, glia, and progenitors. These results suggest that chloride-mediated excitation plays a crucial role in promoting neurogenesis from the earliest stages of embryonic development.


Neurochemical Research | 2004

Electroneutral Cation-Chloride Cotransporters in the Central Nervous System

Adriana Mercado; David B. Mount; Gerardo Gamba

Several members of the cation-chloride cotransporter (solute carrier family 12, SLC12) gene family are expressed within the central nervous system, with one family member, the K+-Cl− cotransporter KCC2, exclusive to neurons. These transporters are best known for their roles in cell volume regulation and epithelial salt transport, but are increasingly receiving attention in neuroscience. In particular, intracellular chloride activity and hence the neuronal response to GABA and glycine appears to be determined by a balance between chloride efflux and influx through KCC2 and the Na+-K+-2Cl− cotransporter NKCC1, respectively. This relationship has important implications for neuronal development, sensory perception, neuronal excitability, and the response to neuronal injury. Finally, the association between loss of function in the K+-Cl− cotransporter KCC3, with a severe peripheral neuropathy associated with agenesis of the corpus callosum, has revealed an unexpected role for K+-Cl− cotransport in the development and/or maintenance of both the central and peripheral nervous systems.


Journal of Biological Chemistry | 2006

A C-terminal Domain in KCC2 Confers Constitutive K+-Cl- Cotransport

Adriana Mercado; Vadjista Broumand; Kambiz Zandi-Nejad; Alissa H. Enck; David B. Mount

The neuron-specific K+-Cl- cotransporter KCC2 plays a crucial role in determining intracellular chloride activity and thus the neuronal response to γ-aminobutyric acid and glycine. Of the four KCCs, KCC2 is unique in mediating constitutive K+-Cl- cotransport under isotonic conditions; the other three KCCs are exclusively swelling-activated, with no isotonic activity. We have utilized a series of chimeric cDNAs to localize the determinant of isotonic transport in KCC2. Two generations of chimeric KCC4-KCC2 cDNAs initially localized this characteristic to within a KCC2-specific expansion of the cytoplasmic C terminus, between residues 929 and 1043. This region of KCC2 is rich in prolines, serines, and charged residues and encompasses two predicted PEST sequences. Substitution of this region in KCC2 with the equivalent sequence of KCC4 resulted in a chimeric KCC that was devoid of isotonic activity, with intact swelling-activated transport. A third generation of chimeras demonstrated that a domain just distal to the PEST sequences confers isotonic transport on KCC4. Mutagenesis of this region revealed that residues 1021-1035 of KCC2 are sufficient for isotonic transport. Swelling-activated K+-Cl- cotransport is abrogated by calyculin A, whereas isotonic transport mediated by KCC chimeras and KCC2 is completely resistant to this serine-threonine phosphatase inhibitor. In summary, a 15-residue C-terminal domain in KCC2 is both necessary and sufficient for constitutive K+-Cl- cotransport under isotonic conditions. Furthermore, unlike swelling-activated transport, constitutive K+-Cl- cotransport mediated by KCC2 is completely independent of serine-threonine phosphatase activity, suggesting that these two modes of transport are activated by distinct mechanisms.


The Journal of Membrane Biology | 2009

Slc26a9—Anion Exchanger, Channel and Na+ Transporter

Min-Hwang Chang; Consuelo Plata; Kambiz Zandi-Nejad; Aleksandra Sinđić; Caroline R. Sussman; Adriana Mercado; Vadjista Broumand; Viswanathan Raghuram; David B. Mount; Michael F. Romero

The SLC26 gene family encodes anion transporters with diverse functional attributes: (a) anion exchanger, (b) anion sensor, and (c) anion conductance (likely channel). We have cloned and studied Slc26a9, a paralogue expressed mostly in lung and stomach. Immunohistochemistry shows that Slc26a9 is present at apical and intracellular membranes of lung and stomach epithelia. Using expression in Xenopus laevis oocytes and ion-sensitive microelectrodes, we discovered that Slc26a9 has a novel function not found in any other Slc26 proteins: cation coupling. Intracellular pH and voltage measurements show that Slc26a9 is a nCl−-HCO3− exchanger, suggesting roles in gastric HCl secretion or pulmonary HCO3− secretion; Na+ electrodes and uptakes reveal that Slc26a9 has a cation dependence. Single-channel measurements indicate that Slc26a9 displays discrete open and closed states. These experiments show that Slc26a9 has three discrete physiological modes: nCl−-HCO3− exchanger, Cl− channel, and Na+-anion cotransporter. Thus, the Slc26a9 transporter channel is uniquely suited for dynamic and tissue-specific physiology or regulation in epithelial tissues.


Hypertension | 1998

Electroneutral Na-coupled cotransporter expression in the kidney during variations of NaCl and water metabolism.

Gabriela Moreno; Alejandra Merino; Adriana Mercado; Juan Pablo Herrera; Jorge González-Salazar; Ricardo Correa-Rotter; Steven C. Hebert; Gerardo Gamba

The purpose of the present study was to analyze the long-term regulation of renal bumetanide-sensitive Na+-K+-2Cl- cotransporter and thiazide-sensitive Na+-Cl- cotransporter gene expression during changes in NaCl and water metabolism. Male Wistar rats exposed to high or low NaCl intake, saline loading, dehydration, water loading, and furosemide administration during 7 days were studied. Control groups had access to regular food and tap water. Rats were kept in metabolic cages for 4 days before and during the experiment to determine daily urinary electrolyte excretion and osmolarity. At the end of the experiment, creatinine clearance and serum electrolyte levels were also measured. Kidneys were excised and macroscopically subdivided into cortex and outer and inner medulla. Total RNA was extracted from each individual cortex or outer medulla by use of the guanidine/cesium chloride method. The Na+-K+-2Cl- cotransporter expression in outer medulla total RNA was assessed by nonradioactive Northern blot analysis and the Na+-Cl- cotransporter expression in renal cortex total RNA was assessed by semiquantitative polymerase chain reaction. Experimental maneuvers were adequately tolerated, and all groups developed the appropriate renal response to each challenge. However, the level of expression of both cotransporters did not change in any model, except for a 2.8-fold increase in the Na+-Cl- cotransporter expression during dehydration. We conclude that nephron adaptation to 7-day modifications in NaCl and water metabolism does not include changes in the amount of electroneutral sodium-coupled cotransporter gene expression at the mRNA level.


Genetics | 2010

Seizure sensitivity is ameliorated by targeted expression of K+-Cl- cotransporter function in the mushroom body of the Drosophila brain.

Daria S. Hekmat-Scafe; Adriana Mercado; Adriel A. Fajilan; Ann W. Lee; Richard Hsu; David B. Mount; Mark A. Tanouye

The kccDHS1 allele of kazachoc (kcc) was identified as a seizure-enhancer mutation exacerbating the bang-sensitive (BS) paralytic behavioral phenotypes of several seizure-sensitive Drosophila mutants. On their own, young kccDHS1 flies also display seizure-like behavior and demonstrate a reduced threshold for seizures induced by electroconvulsive shock. The product of kcc shows substantial homology to KCC2, the mammalian neuronal K+–Cl− cotransporter. The kccDHS1 allele is a hypomorph, and its seizure-like phenotype reflects reduced expression of the kcc gene. We report here that kcc functions as a K+–Cl− cotransporter when expressed heterologously in Xenopus laevis oocytes: under hypotonic conditions that induce oocyte swelling, oocytes that express Drosophila kcc display robust ion transport activity observed as a Cl−-dependent uptake of the K+ congener 86Rb+. Ectopic, spatially restricted expression of a UAS-kcc+ transgene was used to determine where cotransporter function is required in order to rescue the kccDHS1 BS paralytic phenotype. Interestingly, phenotypic rescue is largely accounted for by targeted, circumscribed expression in the mushroom bodies (MBs) and the ellipsoid body (EB) of the central complex. Intriguingly, we observed that MB induction of kcc+ functioned as a general seizure suppressor in Drosophila. Drosophila MBs have generated considerable interest especially for their role as the neural substrate for olfactory learning and memory; they have not been previously implicated in seizure susceptibility. We show that kccDHS1 seizure sensitivity in MB neurons acts via a weakening of chemical synaptic inhibition by GABAergic transmission and suggest that this is due to disruption of intracellular Cl− gradients in MB neurons.

Collaboration


Dive into the Adriana Mercado's collaboration.

Top Co-Authors

Avatar

David B. Mount

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Gerardo Gamba

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Norma Vázquez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Kambiz Zandi-Nejad

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Luyan Song

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Norma A. Bobadilla

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Zesergio Melo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadjista Broumand

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Silvia Cruz-Rangel

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge