Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Trapani is active.

Publication


Featured researches published by Adriana Trapani.


Expert Opinion on Drug Delivery | 2009

New strategies to deliver anticancer drugs to brain tumors

Valentino Laquintana; Adriana Trapani; Nunzio Denora; Fan Wang; James M. Gallo; Giuseppe Trapani

Background: Malignant brain tumors are among the most challenging to treat and at present there are no uniformly successful treatment strategies. Standard treatment regimens consist of maximal surgical resection followed by radiotherapy and chemotherapy. The limited survival advantage attributed to chemotherapy is partially due to low CNS penetration of antineoplastic agents across the blood–brain barrier (BBB). Objective: The objective of this paper is to review recent approaches to delivering anticancer drugs into primary brain tumors. Methods: Both preclinical and clinical strategies to circumvent the BBB are considered that include chemical modification and colloidal carriers. Conclusion: Analysis of the available data indicates that new approaches may be useful for CNS delivery, yet an appreciation of pharmacokinetic issues and improved knowledge of tumor biology will be needed to affect significantly drug delivery to the target site.


European Journal of Pharmaceutics and Biopharmaceutics | 2010

A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides ☆

Adriana Trapani; Angela Lopedota; Massimo Franco; Nicola Cioffi; Eliana Ieva; Marcos Garcia-Fuentes; María J. Alonso

The aim of this study was to characterize new nanoparticles (NPs) containing chitosan (CS), or CS/cyclodextrin (CDs), and evaluate their potential for the oral delivery of the peptide glutathione (GSH). More precisely, NP formulations composed of CS, CS/alpha-CD and CS/sulphobutyl ether-beta-cyclodextrin (SBE(7m)-beta-CD) were investigated for this application. CS/CD NPs showed particle sizes ranging from 200 to 500nm. GSH was loaded more efficiently in CS/SBE(7m)-beta-CD NPs by forming a complex between the tripeptide and the CD. X-ray Photoelectron Spectroscopy (XPS) analysis suggested that GSH is located in the core of CS/SBE(7m)-beta-CD NPs and that it is almost absent from the NP surface. Release studies performed in vitro at pH 1.2 and pH 6.8 showed that NP release properties can be modulated by selecting an appropriate CD. Transport studies performed in the frog intestine model confirmed that both CS and CS/CD nanoparticles could induce permeabilization of the intestinal epithelia. However, CS/SBE(7m)-beta-CD NPs provided absorption-enhancing properties in all segments of the duodenum, whereas CS NPs effect was restricted to the first segment of the duodenum. From the data obtained, we believe that CS/CD nanoparticles might represent an interesting technological platform for the oral administration of small peptides.


International Journal of Pharmaceutics | 2011

Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery

Adriana Trapani; Elvira De Giglio; D. Cafagna; Nunzio Denora; Gennaro Agrimi; Tommaso Cassano; Silvana Gaetani; Vincenzo Cuomo; Giuseppe Trapani

The aim of this study was to characterize nanoparticles (NPs) composed of chitosan (CS) and evaluate their potential for brain delivery of the neurotransmitter Dopamine (DA). For this purpose, CS based NPs were incubated with DA at two different concentrations giving rise to nanocarriers denoted as DA/CSNPs (1) and DA/CSNPs (5), respectively. X-ray Photoelectron Spectroscopy (XPS) analysis confirmed that DA was adsorbed onto the external surface of such NPs. The cytotoxic effect of the CSNPs and DA/CSNPs was assessed using the MTT test and it was found that the nanovectors are less cytotoxic than the neurotransmitter DA after 3 h of incubation time. Transport studies across MDCKII-MDR1 cell line showed that DA/CSNPs (5) give rise to a significant transport enhancing effect compared with the control and greater than the corresponding DA/CSNPs (1). Measurement of reactive oxygen species (ROS) suggested a low DA/CSNPs neurotoxicity after 3 h. In vivo brain microdialysis experiments in rat showed that intraperitoneal acute administration of DA/CSNPs (5) (6-12 mg/kg) induced a dose-dependent increase in striatal DA output. Thus, these CS nanoparticles represent an interesting technological platform for DA brain delivery and, hence, may be useful for Parkinsons disease treatment.


International Journal of Pharmaceutics | 2009

The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs

Adriana Trapani; Johannes Sitterberg; Udo Bakowsky; Thomas Kissel

The laser dye 6-coumarin was selected as model of low water soluble drug to be encapsulated in glycol chitosan nanoparticles intended for transmucosal applications and, at the same time, being a fluorescent probe, it is of aid to elucidate the intracellular fate of the particles. To increase the aqueous solubility of the tracer, the complexation with different cyclodextrins was adopted. The fluorescence properties of the inclusion complexes were evaluated. The increase in aqueous solubility provided by different cyclodextrins [up to 1.4x10(-4) M in the case of heptakis (2,6-di-O-methyl)-beta-cyclodextrin] allowed the preparation of novel glycol chitosan nanoparticles according to the ionic cross-linking of the polycation by sodium tripolyphosphate. Small changes in the preparation technique allowed to produce particles of two different sizes, around 200 nm and bigger than 300 nm where the contribution of cyclodextrin consisted of the modulation encapsulation efficiency in the final particles. Confocal laser scanning microphotographs clearly showed the internalization of 6-coumarin nanoparticles in Caco-2 cell line. The results reveal that these biodegradable nanoparticles hold promise as probes in biomedical field.


Current Topics in Medicinal Chemistry | 2009

Recent Advances in Medicinal Chemistry and Pharmaceutical Technology- Strategies for Drug Delivery to the Brain

Nunzio Denora; Adriana Trapani; Valentino Laquintana; Angela Lopedota; Giuseppe Trapani

This paper provides a mini-review of some recent approaches for the treatment of brain pathologies examining both medicinal chemistry and pharmaceutical technology contributions. Medicinal chemistry-based strategies are essentially aimed at the chemical modification of low molecular weight drugs in order to increase their lipophilicity or the design of appropriate prodrugs, although this review will focus primarily on the use of prodrugs and not analog development. Recently, interest has been focused on the design and evaluation of prodrugs that are capable of exploiting one or more of the various endogenous transport systems at the level of the blood brain barrier (BBB). The technological strategies are essentially non-invasive methods of drug delivery to malignancies of the central nervous system (CNS) and are based on the use of nanosystems (colloidal carriers) such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, polymeric micelles and dendrimers. The biodistribution of these nanocarriers can be manipulated by modifying their surface physico-chemical properties or by coating them with surfactants and polyethylene-glycols (PEGs). Liposomes, surfactant coated polymeric nanoparticles, and solid lipid nanoparticles are promising systems for delivery of drugs to tumors of the CNS. This mini-review discusses issues concerning the scope and limitations of both the medicinal chemistry and technological approaches. Based on the current findings, it can be concluded that crossing of the BBB and drug delivery to CNS is extremely complex and requires a multidisciplinary approach such as a close collaboration and common efforts among researchers of several scientific areas, particularly medicinal chemists, biologists and pharmaceutical technologists.


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges

Giuseppe Tripodo; Adriana Trapani; Maria Luisa Torre; Gaetano Giammona; Giuseppe Trapani; Delia Mandracchia

Hyaluronic acid (HA) is a biodegradable, biocompatible, nontoxic, and non-immunogenic glycosaminoglycan used for various biomedical applications. The interaction of HA with the CD44 receptor, whose expression is elevated on the surface of many types of tumor cells, makes this polymer a promising candidate for intracellular delivery of imaging and anticancer agents exploiting a receptor-mediated active targeting strategy. Therefore, HA and its derivatives have been most investigated for the development of several carrier systems intended for cancer diagnosis and therapy. Nonetheless, different and important delivery applications of the polysaccharide have also been described, including gene and peptide/protein drugs delivery. The aim of this review was to provide an overview of the existing recent literature on the use of HA and its derivatives for drug delivery and imaging. Notable attention is given to nanotheranostic systems obtained after conjugation of HA to nanocarriers as quantum dots, carbon nanotubes and graphene. Meanwhile, attention is also paid to some challenging aspects that need to be addressed in order to allow translation of preclinical models based on HA and its derivatives for drug delivery and imaging purposes to clinical testing and further their development.


European Journal of Pharmaceutics and Biopharmaceutics | 2009

The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione

Angela Lopedota; Adriana Trapani; Annalisa Cutrignelli; Laura Chiarantini; Elena Pantucci; Rosa Curci; Elisabetta Manuali; Giuseppe Trapani

The aim of this work was to develop and characterize new nanoparticle systems based on Eudragit RS 100 and cyclodextrins (CDs) for the transmucosal administration of glutathione (GSH). For this purpose, nanoparticles (NPs) with the mucoadhesive properties of Eudragit RS 100 and the penetration enhancing and peptide protective properties of CDs were prepared and evaluated. The quasi-emulsion solvent diffusion technique was used to prepare the NPs with natural and chemically modified (HP-beta-CD and Me-beta-CD) CDs. The NPs prepared showed homogeneous size distribution, mean diameters between 99 and 156nm, a positive net charge and spherical morphology. Solid state FT-IR, thermal analysis (DSC), and X-ray diffraction studies suggest that the nanoencapsulation process produces a marked decrease in crystallinity of GSH. The encapsulation efficiency of the peptide was found to be between 14.8% and 24%. The results indicate that mean diameters, surface charges and drug-loaded NPs were not markedly affected by the CD, whereas the presence of the latter influences drug release and to some extent peptide stability and absorption. Finally, it has been shown that CD/Eudragit RS 100 NPs may be used for transmucosal absorption of GSH without any cytotoxicity using the epithelial human HaCaT and murine monocyte macrophage RAW264.7 cell lines.


International Journal of Pharmaceutics | 2013

Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles

Adriana Trapani; Sante Di Gioia; Nicoletta Ditaranto; Nicola Cioffi; Francisco M. Goycoolea; Annalucia Carbone; Marcos Garcia-Fuentes; Massimo Conese; María J. Alonso

The aim of this study was to evaluate the performance of chitosan (CS) and glycol chitosan (GCS) nanoparticles containing the surfactant Lipoid S100 for the systemic delivery of low molecular weight heparin (LMWH) upon pulmonary administration. These nanoparticles were prepared in acidic and neutral conditions using the ionotropic gelation technique. The size and zeta potential of the NPs were affected by the pH and also the type of polysaccharide (CS or GCS). The size (between 156 and 385 nm) was smaller and the zeta potential (from +11 mV to +30 mV) higher for CS nanoparticles prepared in acidic conditions. The encapsulation efficiency of LMWH varied between 100% and 43% for the nanoparticles obtained in acidic and neutral conditions, respectively. X-ray photoelectron spectroscopy studies indicated that the surfactant Lipoid S100 was localized on the nanoparticles surface irrespective of the formulation conditions. In vivo studies showed that systems prepared in acidic conditions did not increase coagulation times when administered to mice by the pulmonary route. In contrast, Lipoid S100-LMWH GCS NPs prepared in neutral conditions showed a pharmacological efficacy. Overall, these results illustrate some promising features of CS-based nanocarriers for pulmonary delivery of LMWH.


Carbohydrate Polymers | 2014

Characterization and cytocompatibility of an antibiotic/chitosan/ cyclodextrins nanocoating on titanium implants

Monica Mattioli-Belmonte; Stefania Cometa; Concetta Ferretti; Roberta Iatta; Adriana Trapani; Edmondo Ceci; Mirella Falconi; Elvira De Giglio

A novel ciprofloxacin loaded chitosan nanoparticle-based coating onto titanium substrates has been developed and characterized to obtain an orthopaedic implant surface able to in situ release the antibiotic for the prevention of post-operative infections. Ciprofloxacin loaded chitosan nanoparticles were obtained using the combination of sulfobutyl ether-beta-cyclodextrin and gamma-cyclodextrin. The resulting nanoparticulate system was characterized by TEM, HPLC and XPS. Particle size was in the range 426-552 nm and zeta potential values were around +30 mV. This antibacterial coating was able to in vitro inhibit two nosocomial Staphylococcus aureus strains growth, with a reduction of about 20 times compared to controls. No impairment in MG63 osteoblast-like cells viability, adhesion and gene expression were detected at 48 h, 7 and 14 days of culture. Overall, the investigated coating represents a promising candidate for the development of a new antibiotic carrier for titanium implants.


Aaps Pharmscitech | 2011

Methotrexate-Loaded Chitosan- and Glycolchitosan-Based Nanoparticles: A Promising Strategy for the Administration of the Anticancer Drug to Brain Tumors

Adriana Trapani; Nunzio Denora; Giuliano Iacobellis; Johannes Sitterberg; Udo Bakowsky; Thomas Kissel

Brain tumor treatment employing methotrexate (MTX) is limited by the efflux mechanism of Pg-p on the blood–brain barrier. We aimed to investigate MTX-loaded chitosan or glycol chitosan (GCS) nanoparticles (NPs) in the presence and in the absence of a coating layer of Tween 80 for brain delivery of MTX. The effect of a low Tween 80 concentration was evaluated. MTX NPs were formulated following the ionic gelation technique and size and zeta potential measurements were acquired. Transport across MDCKII-MDR1 monolayer and cytotoxicity studies against C6 glioma cell line were also performed. Cell/particles interaction was visualized by confocal microscopy. The particles were shown to be cytotoxic against C6 cells line and able to overcome MDCKII-MDR1 cell barrier. GCS-based NPs were the most cytotoxic NPs. Confocal observations highlighted the internalization of Tween 80-coated fluorescent NPs more than Tween 80-uncoated NPs. The results suggest that even a low concentration of Tween 80 is sufficient for enhancing the transport of MTX from the NPs across MDCKII-MDR1 cells. The nanocarriers represent a promising strategy for the administration of MTX to brain tumors which merits further investigations under in vivo conditions.

Collaboration


Dive into the Adriana Trapani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge