Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriani Paganini Damiani is active.

Publication


Featured researches published by Adriani Paganini Damiani.


Environmental Research | 2010

Heavy metals and DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense coal basin, Brazil

Jairo José Zocche; Daniela Dimer Leffa; Adriani Paganini Damiani; Fernando Carvalho; Rodrigo Ávila Mendonça; Carla Eliete Iochims dos Santos; Liana Appel Boufleur; Johnny Ferraz Dias; Vanessa Moraes de Andrade

We assessed the content of heavy metals in the liver and the DNA damage in blood cells of insectivore bats in the Catarinense Carboniferous Basin, Southern Brazil. Three bats species (Molossus molossus, Tadarida brasiliensis and Eptesicus diminutus) were collected in a coal mining area and in a control area. The heavy metal content in bats was detected according to the PIXE technique and the DNA damage was assessed by the Comet assay. The contents of Cr, Ni, Cu and Pb in M. molossus and of Cu and Fe in T. brasiliensis from the coal mining area was higher than in the animals from the control area. In both areas differences in metal contents in the liver were observed between the bat species. The parameters assessed by the Comet assay were significantly higher in E. diminutus as compared to M. molossus and T. brasiliensis. Values of both Comet assay parameters were significantly higher in the mining area as compared to the control area only for T. brasiliensis.


Environmental Toxicology and Pharmacology | 2013

Assessment of heavy metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal open-casting mine.

Jairo José Zocche; Adriani Paganini Damiani; Giana Hainzenreder; Rodrigo Ávila Mendonça; Poliana Bernardo Peres; Carla Eliete Iochims dos Santos; Rafaela Debastiani; Johnny Ferraz Dias; Vanessa Moraes de Andrade

The aims of the study were to determine the heavy metal content in the tissues of Hypsiboas faber from a coal mining area and to compare the DNA damage in the blood cells of these animals with that of animals living in an unpolluted area. The heavy metal content was detected according to the technique of Particle-Induced X-ray Emission (PIXE) and the DNA damage was assessed by the Comet assay. Our results reveal that the specimens of H. faber collected from the coal mining area exhibited elements of order Fe>Cu>Al>Zn>Rb>Mn>Br, independently of the organ. The values of Comet assay parameters (DNA damage index and DNA damage frequency) were significantly higher in specimens collected from the coal mining area than in the reference animals. Our study concludes that the coal mining residues are genotoxic to amphibians and may have adverse effects on soil, water, vegetation and wild animals.


Mutation Research | 2014

Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet

Daniela Dimer Leffa; Juliana da Silva; Francine Daumann; Ana Luiza F. Dajori; Luiza Martins Longaretti; Adriani Paganini Damiani; Fábio de Santos Lira; Fernanda dos Anjos Campos; Alexandre de Barros Falcão Ferraz; Dione Silva Corrêa; Vanessa Moraes de Andrade

Acerola contains high levels of vitamin C and rutin and shows the corresponding antioxidant properties. Oxidative stress on the other hand is an important factor in the development of obesity. In this study, we investigated the biochemical and antigenotoxic effects of acerola juice in different stages of maturity (unripe, ripe and industrial) and its main pharmacologically active components vitamin C and rutin, when given as food supplements to obese mice. Initial HPLC analyses confirmed that all types of acerola juice contained high levels of vitamin C and rutin. DPPH tests quantified the antioxidant properties of these juices and revealed higher antioxidant potentials compared to pure vitamin C and rutin. In an animal test series, groups of male mice were fed on a standard (STA) or a cafeteria (CAF) diet for 13 weeks. The latter consisted of a variety of supermarket products, rich in sugar and fat. This CAF diet increased the feed efficiency, but also induced glucose intolerance and DNA damage, which was established by comet assays and micronucleus tests. Subsequently, CAF mice were given additional diet supplements (acerola juice, vitamin C or rutin) for one month and the effects on bone marrow, peripheral blood, liver, kidney, and brain were examined. The results indicated that food supplementation with ripe or industrial acerola juice led to a partial reversal of the diet-induced DNA damage in the blood, kidney, liver and bone marrow. For unripe acerola juice food supplementation, beneficial effects were observed in blood, kidney and bone marrow. Food supplementation with vitamin C led to decreased DNA damage in kidney and liver, whereas rutin supplementation led to decreased DNA damage in all tissue samples observed. These results suggest that acerola juice helps to reduce oxidative stress and may decrease genotoxicity under obesogenic conditions.


Mutation Research | 2014

Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats.

Eria Cardoso; Gislaine T. Rezin; Elton Torres Zanoni; Frederico de Souza Notoya; Daniela Dimer Leffa; Adriani Paganini Damiani; Francine Daumann; Juan Carlos Ortiz Rodriguez; R. Benavides; Luciano da Silva; Vanessa Moraes de Andrade; Marcos Marques da Silva Paula

The use of gold nanoparticles is increasing in medicine; however, their toxic effects remain to be elucidated. Studies show that gold nanoparticles can cross the blood-brain barrier, as well as accumulate in the brain. Therefore, this study was undertaken to better understand the effects of gold nanoparticles on rat brains. DNA damage parameters were evaluated in the cerebral cortex of adult rats submitted to acute and chronic administration of gold nanoparticles of two different diameters: 10 and 30nm. During acute administration, adult rats received a single intraperitoneal injection of either gold nanoparticles or saline solution. During chronic administration, adult rats received a daily single injection for 28 days of the same gold nanoparticles or saline solution. Twenty-four hours after either single (acute) or last injection (chronic), the rats were euthanized by decapitation, their brains removed, and the cerebral cortices isolated for evaluation of DNA damage parameters. Our study showed that acute administration of gold nanoparticles in adult rats presented higher levels of damage frequency and damage index in their DNA compared to the control group. It was also observed that gold nanoparticles of 30nm presented higher levels of damage frequency and damage index in the DNA compared to the 10nm ones. When comparing the effects of chronic administration of gold nanoparticles of 10 and 30nm, we observed that occurred significant different index and frequency damage, comparing with control group. However, there is no difference between the 10 and 30nm groups in the levels of DNA damage for both parameters of the Comet assay. Results suggest that gold nanoparticles for both sizes cause DNA damage for chronic as well as acute treatments, although a higher damage was observed for the chronic one.


Pharmacology, Biochemistry and Behavior | 2012

Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice

Saulo Fábio Ramos; Bruna P. Mendonça; Daniela Dimer Leffa; Robson Pacheco; Adriani Paganini Damiani; Giana Hainzenreder; Fabricia Petronilho; Felipe Dal-Pizzol; Remo Guerrini; Girolamo Calo; Elaine C. Gavioli; Carina R. Boeck; Vanessa Moraes de Andrade

Neuropeptide S (NPS) and its receptor were recently discovered in the central nervous system. In rodents, NPS promotes hyperlocomotion, wakefulness, anxiolysis, anorexia, and analgesia and enhances memory when injected intracerebroventricularly (i.c.v.). Herein, NPS at different doses (0.01, 0.1 and 1nmol) was i.c.v. administered in mice challenged with pentylenetetrazole (PTZ; 60mg/kg) repeatedly injected. Aiming to assess behavioral alterations and oxidative damage to macromolecules in the brain, NPS was injected 5min prior to the last dose of PTZ. The administration of NPS only at 1nmol increased the duration of seizures evoked by PTZ, without modifying frequency and latency of seizures. Biochemical analysis revealed that NPS attenuated PTZ-induced oxidative damage to proteins and lipids in the hippocampus and cerebral cortex. In contrast, the administration of NPS to PTZ-treated mice increased DNA damage in the hippocampus, but not cerebral cortex. In conclusion, this is the first evidence of the potential proconvulsive effects of NPS in mice. The protective effects of NPS against lipid and protein oxidative damage in the mouse hippocampus and cerebral cortex evoked by PTZ-induced seizures are quite unexpected. The present findings were discussed analyzing the paradoxical effects of NPS: facilitation of convulsive behavior and protection against oxidative damage to lipids and proteins.


Journal of Toxicology and Environmental Health | 2017

Effect of green juice and their bioactive compounds on genotoxicity induced by alkylating agents in mice

Gabriela Elibio Fagundes; Adriani Paganini Damiani; Gabriela D. Borges; Karina de Oliveira Teixeira; Maiellen Martins Jesus; Francine Daumann; Fernanda Ramlov; Tiago José G. Carvalho; Daniela Dimer Leffa; Paula Rohr; Vanessa Moraes de Andrade

ABSTRACT Kale juice (Brassica oleracea L. var. acephala D.C.) is a reliable source of dietary carotenoids and typically contains the highest concentrations of lutein (LT) and beta-carotene (BC) among green leafy vegetables. As a result of their antioxidant properties, dietary carotenoids are postulated to decrease the risk of disease occurrence, particularly certain cancers. The present study aimed to (1) examine the genotoxic and antigenotoxic activity of natural and commercially available juices derived from Brassica oleracea and (2) assess influence of LT or BC against DNA damage induced by alkylating agents such as methyl methanesulfonate (MS) or cyclophosphamide (CP) in vivo in mice. Male Swiss mice were divided into groups of 6 animals, which were treated with water, natural, or commercial Brassica oleraceae juices (kale), LT, BC, MMS, or CP. After treatment, DNA damage was determined in peripheral blood lymphocytes using the comet assay. Results demonstrated that none of the Brassica oleraceae juices or carotenoids produced genotoxic effects. In all examined cell types, kale juices or carotenoids inhibited DNA damage induced by MMS or CP administered either pre- or posttreatment by 50 and 20%, respectively. Under our experimental conditions, kale leaf juices alone exerted no marked genotoxic or clastogenic effects. However, a significant decrease in DNA damage induced by MMS or CP was noted. This effect was most pronounced in groups that received juices, rather than carotenoids, suggesting that the synergy among constituents present in the food matrix may be more beneficial than the action of single compounds. Data suggest that the antigenotoxic properties of kale juices may be of therapeutic importance.


Environmental Toxicology and Pharmacology | 2014

Effect of antiretroviral drugs on the DNA damage in mice

Hugo Martins de Oliveira; Adriani Paganini Damiani; Renata de Oliveira Dias; Pedro Roosevelt Torres Romão; Vanessa Moraes de Andrade

In order to investigate the effects of two non-nucleoside reverse transcriptase inhibitors (NNRTIs) on the DNA damage in vivo, nevirapine (NVP; 3.3 mg/kg), efavirenz (EFV; 10 mg/kg) or saline were administered orally. Acute effects were analyzed 24 h after the administration of a single NNRTI dose, and subchronic effects 24 h after the last dose. Peripheral blood, brain, heart and liver samples were subjected to genotoxicity analyses and polychromatic erythrocytes from the bone marrow to micronucleus test. The micronucleus test did not reveal any significant differences between animals from the acute or subchronic groups. Comet assay showed that acute and subchronic NNRTI treatment did not cause any significant DNA damage in heart, liver or peripheral blood cells. However, increased damage indexes and frequencies were observed in the brain of mice, subchronically treated with EFV. This result suggests for the first time that this drug might induce genotoxicity in the brain.


Mutation Research | 2015

Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake

Gislaine Z. Réus; Helena M. Abaleira; Monique Michels; Débora B. Tomaz; Maria Augusta B. dos Santos; Anelise S. Carlessi; Beatriz I. Matias; Daniela Dimer Leffa; Adriani Paganini Damiani; Vitor de C. Gomes; Vanessa Moraes de Andrade; Felipe Dal-Pizzol; Jesus Landeira-Fernadez; João Quevedo

This study aimed at investigating the effects of chronic mild stress on DNA damage, NMDA receptor subunits and glutamate transport levels in the brains of rats with an anxious phenotype, which were selected to represent both the high-freezing (CHF) and low-freezing (CLF) lines. The anxious phenotype induced DNA damage in the hippocampus, amygdala and nucleus accumbens (NAc). CHF rats subjected to chronic stress presented a more pronounced DNA damage in the hippocampus and NAc. NMDAR1 were increased in the prefrontal cortex (PC), hippocampus and amygdala of CHF, and decreased in the hippocampus, amygdala and NAc of CHF stressed. NMDAR2A were decreased in the amygdala of the CHF and stressed; and increased in CHF stressed. NMDRA2A in the NAc was increased after stress, and decreased in the CLF. NMDAR2B were increased in the hippocampus of CLF and CHF. In the amygdala, there was a decrease in the NMDAR2B for stress in the CLF and CHF. NMDAR2B in the NAc were decreased for stress and increased in the CHF; in the PC NMDAR2B increased in the CHF. EAAT1 increased in the PC of CLF+stress. In the hippocampus, EAAT1 decreased in all groups. In the amygdala, EAAT1 decreased in the CLF+stress and CHF. EAAT2 were decreased in the PC for stress, and increased in CHF+control. In the hippocampus, the EAAT2 were increased for the CLF and decreased in the CLF+stress. In the amygdala, there was a decrease in the EATT2 in the CLF+stress and CHF. These findings suggest that an anxious phenotype plus stress may induce a more pronounced DNA damage, and promote more alterations in the glutamatergic system. These findings may help to explain, at least in part, the common point of the mechanisms involved with the pathophysiology of depression and anxiety.


Metabolic Brain Disease | 2017

Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II

Milena Carvalho-Silva; Lara M. Gomes; Giselli Scaini; Joyce Rebelo; Adriani Paganini Damiani; Maiara Pereira; Vanessa Moraes de Andrade; Fernanda F. Gava; Samira S. Valvassori; Patrícia Fernanda Schuck; Gustavo C. Ferreira; Emilio L. Streck

Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.


Molecular and Cellular Biochemistry | 2017

Role of antioxidant treatment on DNA and lipid damage in the brain of rats subjected to a chemically induced chronic model of tyrosinemia type II

Emilio L. Streck; Samira Dal-Toé De Prá; Paula Ronsani Ferro; Milena Carvalho-Silva; Lara M. Gomes; Jotele Fontana Agostini; Adriani Paganini Damiani; Vanessa Moraes de Andrade; Patrícia Fernanda Schuck; Gustavo C. Ferreira; Giselli Scaini

Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of l-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of l-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.

Collaboration


Dive into the Adriani Paganini Damiani's collaboration.

Top Co-Authors

Avatar

Vanessa Moraes de Andrade

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Daniela Dimer Leffa

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Jairo José Zocche

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Carla Eliete Iochims dos Santos

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Emilio L. Streck

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Francine Daumann

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Johnny Ferraz Dias

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Luiza Martins Longaretti

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Patrícia Fernanda Schuck

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Giselli Scaini

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge