Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriano A. Mendes is active.

Publication


Featured researches published by Adriano A. Mendes.


Química Nova | 2004

Modificação de óleos e gorduras por biotransformação

Heizir F. de Castro; Adriano A. Mendes; Júlio César dos Santos; C. L. Aguiar

The oleochemical industry has a permanent interested in controlling the physical, functional and organoleptical properties of their products and in producing useful derivatives from their raw materials. The potential of biotechnology for developing novel or well-known products at more competitive costs meets the need of this industrial segment in expanding their goals. In this work some technical aspects, problems and perspectives related to the production of oil and fat derivatives using biotransformation techniques are discussed. Particular emphasis is given to the description of biotransformation processes using lipase as catalyst, in view of the great versatility of this enzyme class to mediate typical reactions in this technological sector.


Biomacromolecules | 2008

Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose.

Gloria Fernández-Lorente; Cesar Godoy; Adriano A. Mendes; Fernando López-Gallego; Valeria Grazú; Blanca de las Rivas; Jose M. Palomo; Juan A. Hermoso; Roberto Fernandez-Lafuente; Jose M. Guisan

In this paper, the stabilization of a lipase from Bacillus thermocatenulatus (BTL2) by a new strategy is described. First, the lipase is selectively adsorbed on hydrophobic supports. Second, the carboxylic residues of the enzyme are modified with ethylenediamine, generating a new enzyme having 4-fold more amino groups than the native enzyme. The chemical amination did not present a significant effect on the enzyme activity and only reduced the enzyme half-life by a 3-4-fold factor in inactivations promoted by heat or organic solvents. Next, the aminated and purified enzyme is desorbed from the support using 0.2% Triton X-100. Then, the aminated enzyme was immobilized on glyoxyl-agarose by multipoint covalent attachment. The immobilized enzyme retained 65% of the starting activity. Because of the lower p K of the new amino groups in the enzyme surface, the immobilization could be performed at pH 9 (while the native enzyme was only immobilized at pH over 10). In fact, the immobilization rate was higher at this pH value for the aminated enzyme than that of the native enzyme at pH 10. The optimal stabilization protocol was the immobilization of aminated BTL2 at pH 9 and the further incubation for 24 h at 25 degrees C and pH 10. This preparation was 5-fold more stable than the optimal BTL2 immobilized on glyoxyl agarose and around 1200-fold more stable than the enzyme immobilized on CNBr and further aminated. The catalytic properties of BTL2 could be greatly modulated by the immobilization protocol. For example, from (R/S)-2- O-butyryl-2-phenylacetic acid, one preparation of BTL2 could be used to produce the S-isomer, while other preparation produced the R-isomer.


International Journal of Biological Macromolecules | 2012

Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis

Adriano A. Mendes; Pedro C. Oliveira; Ana Maria Abreu Velez; Roberto C. Giordano; Raquel de Lima Camargo Giordano; Heizir F. de Castro

Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (≈90 mmol L(-1)). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex(®) 100 L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)).


Química Nova | 2005

Aplicação de lipases no tratamento de águas residuárias com elevados teores de lipídeos

Adriano A. Mendes; Heizir F. de Castro; Ernandes Benedito Pereira; Agenor Furigo Junior

The process of anaerobic digestion has been greatly developed during the last decades for the treatment of wastewater from food industries as for example, wastewaters from sugar and starch manufacturing and from breweries. However, for wastewaters which contain high amounts of fats and proteins, such as those from slaughterhouses and dairies, anaerobic digestion was found to be troublesome, due to the potential of sludge flotation, the formation of scum layers of lipids at the surface of the reactor, which are not digested and the toxicity of the intermediate compounds (long chain fatty acids) generated during the anaerobic digestion of the wastewater. The addition of hydrolytic enzymes, such as lipases prior to the anaerobic digestion can minimize these problems. In this work, this strategy is reviewed and the technical issues that must be considered in determining its feasibility are discussed.


Química Nova | 2011

Aplicação de quitosana como suporte para a imobilização de enzimas de interesse industrial

Adriano A. Mendes; Pedro C. Oliveira; Heizir F. de Castro; Raquel de Lima Camargo Giordano

Chitosan, poly[β-(1-4)-linked-2-amino-2-deoxy-D-glucose], is the N-deacetylated product of chitin which is a major component of arthropod and crustacean shells such as lobsters, crabs, shrimps, and cuttlefishes. In addition, chitosan has many significant biological and chemical properties such as biodegradability, biocompatibility and bioactivity as well as polycationic properties. Thus, it has been widely used in many industrial and biomedical applications including wastewater treatment, chromatographic support, carriers for controlled drug delivery and enzyme immobilization. This review is an insight into the exploitation of utilization of chitosan based-supports in different geometrical configurations on the immobilization of enzymes by different protocols for further application in biotransformation reactions.


Enzyme and Microbial Technology | 2016

Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system

Flávia Arantes Pires Lage; Jaquelinne de Jorge Bassi; Maria Carolina Cucatti Corradini; Larissa Midiane Todero; Jaine Honorata Hortolan Luiz; Adriano A. Mendes

Lipase from Thermomyces lanuginosus (TLL) was immobilized on mesoporous hydrophobic poly-methacrylate (PMA) particles via physical adsorption (interfacial activation of the enzyme on the support). The influence of initial protein loading (5-200mg/g of support) on the catalytic properties of the biocatalysts was determined in the hydrolysis of olive oil emulsion and synthesis of isoamyl oleate (biolubricant) by esterification reaction. Maximum adsorbed protein loading and hydrolytic activity were respectively ≈100mg/g and ≈650 IU/g using protein loading of 150mg/g of support. The adsorption process followed the Langmuir isotherm model (R(2)=0.9743). Maximum ester conversion around 85% was reached after 30min of reaction under continuous agitation (200rpm) using 2500mM of each reactant in a solvent-free system, 45°C, 20%m/v of the biocatalyst prepared using 100mg of protein/g of support. Apparent thermodynamic parameters of the esterification reaction were also determined. Under optimal experimental conditions, reusability tests of the biocatalyst (TLL-PMA) after thirty successive cycles of reaction were performed. TLL-PMA fully retained its initial activity up to twenty two cycles of reaction, followed by a slight decrease around 8.6%. The nature of the product (isoamyl oleate) was confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR), proton ((1)H NMR) and carbon ((13)C NMR) nuclear magnetic resonance spectroscopy analyses.


Enzyme Research | 2011

Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies

Adriano A. Mendes; Larissa Freitas; A. K. F. Carvalho; Pedro C. Oliveira; Heizir F. de Castro

The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G). Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate) and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silica-polyvinyl alcohol composite. Among the tested protocols, the highest hydrolytic activity (128.2 ± 8.10 IU·g−1 of support) was achieved when the lipase was immobilized on epoxy-SiO2-PVA using hexane as coupling medium. Lipase immobilized by ionic adsorption on MANAE-agarose also gave satisfactory result, attaining 55.6 ± 2.60 IU·g−1 of support. In this procedure, the maximum loading of immobilized enzyme was 9.3 mg·g−1 of gel, and the highest activity (68.8 ± 2.70 IU·g−1 of support) was obtained when 20 mg of protein·g−1 was offered. Immobilization carried out in aqueous medium by physical adsorption on hydrophobic supports and covalent attachment on MANAE-agarose-glutaraldehyde and glyoxyl-agarose was shown to be unfeasible for Lipase G. Thermal stability tests revealed that the immobilized derivative on epoxy-SiO2-PVA composite using hexane as coupling medium had a slight higher thermal stability than the free lipase.


Brazilian Archives of Biology and Technology | 2005

Effect on the enzymatic hydrolysis of lipids from dairy wastewater by replacing Gum Arabic emulsifier for sodium chloride

Adriano A. Mendes; Heizir F. de Castro

O objetivo deste trabalho foi verificar o efeito do cloreto de sodio em substituicao a goma arabica, na reducao do teor de lipideos presentes em efluentes de laticinios empregando duas preparacoes de lipases pancreaticas adquiridas no mercado nacional (Kin Master - LKM e Nuclear- LNU). A preparacao enzimatica LNU foi mais eficiente na reducao de proteinas e lipideos, mostrando ser uma alternativa promissora para uso no pre-tratamento de aguas residuarias com elevado teor desses compostos.


International Journal of Biological Macromolecules | 2014

Covalent attachment of lipases on glyoxyl-agarose beads: Application in fruit flavor and biodiesel synthesis

Adriano A. Mendes; Heizir F. de Castro; Raquel de Lima Camargo Giordano

The aim of this work was to prepare biocatalysts to catalyze the synthesis of butyl butyrate by esterification reaction, and the synthesis of biodiesel by transesterification of palm and babassu oils with ethanol. Lipase preparations Lipolase® (TLL1) and Lipex® 100 L (TLL2) from Thermomyces lanuginosus and Lipase AK from Pseudomonas fluorescens (PFL) were immobilized on glyoxyl-agarose beads prepared by activation with glycidol (Gly) and epichlorohydrin (Epi). The influence of immobilization time, lipase source and activating agents on the catalytic activity of the biocatalysts were evaluated in both aqueous and organic media. TLL1 immobilized on glyoxyl-agarose by 24 h of incubation resulted biocatalysts with high hydrolytic activity (varying from 1347.3 to 1470.0 IU/g of support) and thermal-stability, around 300-fold more stable than crude TLL1 extract. The maximum load of immobilized TLL1 was around 20 mg of protein/g of support. The biocatalyst prepared exhibited high activity and operational stability on the butyl butyrate synthesis by esterification after five successive cycles of 24 h each (conversion around 85-90%). Immobilized TLL1 and PFL were active in the synthesis of biodiesel by transesterification reaction. Maximum transesterification yield (≥98.5% after 48 h of reaction at 45°C) was provided by using palm oil as feedstock.


International Journal of Biological Macromolecules | 2016

Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester.

Jaquelinne de Jorge Bassi; Larissa Midiane Todero; Flávia Arantes Pires Lage; Gabrielly I. Khedy; Jamile Dell Ducas; Ana Paula Custódio; Marilene A. Pinto; Adriano A. Mendes

n-Octyl oleate was synthetized by enzymatic esterification reaction of oleic acid and n-octanol. Lipases from porcine pancreatic (PPL), Mucor javanicus (MJL), Candida sp. (CALA), Rhizomucor miehei (RML) and Thermomyces lanuginosus (TLL) were immobilized via interfacial activation on poly-methacrylate particles (PMA) and tested as biocatalysts. Their catalytic properties were determined in the hydrolysis of olive oil emulsion. Among them, TLL-PMA was the biocatalyst that yielded the highest hydrolytic activity (217.8±1.1 IU/g) and immobilized protein loading (37.5±0.4mg/g). This biocatalyst was also the most active in n-octyl oleate synthesis, thus selected for further studies. Maximum conversion percentage of 95.1±1.3% was observed after 60min of reaction at 45°C, 10% m/v of TLL-PMA, and molar ratio oleic acid:n-octanol of 1:1.5 in a solvent-free system. The biocatalyst fully retained its original activity after twelve cycles of reaction of 60min each. The product was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy analysis and their physico-chemical properties were determined according to ASTM standard methods. These results show that the immobilization of an alkalophilic and thermostable lipase (TLL) on PMA particles allowed the preparation of a highly active biocatalyst in hydrolysis and esterification reactions.

Collaboration


Dive into the Adriano A. Mendes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela B. Hirata

Universidade Federal de Alfenas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernandes B. Pereira

Universidade Federal de Alfenas

View shared research outputs
Top Co-Authors

Avatar

Larissa Midiane Todero

Universidade Federal de Alfenas

View shared research outputs
Top Co-Authors

Avatar

Paulo Waldir Tardioli

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Roberto Fernandez-Lafuente

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge