Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrianus C. M. Boon is active.

Publication


Featured researches published by Adrianus C. M. Boon.


Journal of Virology | 2009

Host Genetic Variation Affects Resistance to Infection with a Highly Pathogenic H5N1 Influenza A Virus in Mice

Adrianus C. M. Boon; Jennifer DeBeauchamp; Anna Hollmann; Jennifer Luke; Malak Kotb; Sarah Rowe; David Finkelstein; Geoffrey Neale; Lu Lu; Robert W. Williams; Richard J. Webby

ABSTRACT Despite the prevalence of H5N1 influenza viruses in global avian populations, comparatively few cases have been diagnosed in humans. Although viral factors almost certainly play a role in limiting human infection and disease, host genetics most likely contribute substantially. To model host factors in the context of influenza virus infection, we determined the lethal dose of a highly pathogenic H5N1 virus (A/Hong Kong/213/03) in C57BL/6J and DBA/2J mice and identified genetic elements associated with survival after infection. The lethal dose in these hosts varied by 4 logs and was associated with differences in replication kinetics and increased production of proinflammatory cytokines CCL2 and tumor necrosis factor alpha in susceptible DBA/2J mice. Gene mapping with recombinant inbred BXD strains revealed five loci or Qivr (quantitative trait loci for influenza virus resistance) located on chromosomes 2, 7, 11, 15, and 17 associated with resistance to H5N1 virus. In conjunction with gene expression profiling, we identified a number of candidate susceptibility genes. One of the validated genes, the hemolytic complement gene, affected virus titer 7 days after infection. We conclude that H5N1 influenza virus-induced pathology is affected by a complex and multigenic host component.


Antimicrobial Agents and Chemotherapy | 2008

Oseltamivir-Ribavirin Combination Therapy for Highly Pathogenic H5N1 Influenza Virus Infection in Mice

Natalia A. Ilyushina; Alan Hay; Neziha Yilmaz; Adrianus C. M. Boon; Robert G. Webster; Elena A. Govorkova

ABSTRACT We studied the effects of a neuraminidase inhibitor (oseltamivir) and an inhibitor of influenza virus polymerases (ribavirin) against two highly pathogenic H5N1 influenza viruses. In vitro, A/Vietnam/1203/04 virus (clade 1) was highly susceptible to oseltamivir carboxylate (50% inhibitory concentration [IC50] = 0.3 nM), whereas A/Turkey/15/06 virus (clade 2.2) had reduced susceptibility (IC50 = 5.5 nM). In vivo, BALB/c mice were treated with oseltamivir (1, 10, 50, or 100 mg/kg of body weight/day), ribavirin (37.5, 55, or 75 mg/kg/day), or the combination of both drugs for 8 days, starting 4 h before virus inoculation. Monotherapy produced a dose-dependent antiviral effect against the two H5N1 viruses in vivo. Three-dimensional analysis of the drug-drug interactions revealed that oseltamivir and ribavirin interacted principally in an additive manner, with several exceptions of marginal synergy or marginal antagonism at some concentrations. The combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 1 mg/kg/day and the combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 10 mg/kg/day were synergistic against A/Vietnam/1203/04 and A/Turkey/15/06 viruses, respectively. These optimal oseltamivir-ribavirin combinations significantly inhibited virus replication in mouse organs, prevented the spread of H5N1 viruses beyond the respiratory tract, and abrogated the cytokine response (P < 0.01). Importantly, we observed clear differences between the efficacies of the drug combinations against two H5N1 viruses: higher doses were required for the protection of mice against A/Turkey/15/06 virus than for the protection of mice against A/Vietnam/1203/04 virus. Our preliminary results suggest that oseltamivir-ribavirin combinations can have a greater or lesser antiviral effect than monotherapy, depending on the H5N1 virus and the concentrations used.


Emerging Infectious Diseases | 2007

Role of Terrestrial Wild Birds in Ecology of Influenza A Virus (H5N1)

Adrianus C. M. Boon; Matthew R. Sandbulte; Patrick Seiler; Richard J. Webby; Thaweesak Songserm; Yi Guan; Robert G. Webster

Recent viruses are pathogenic for some small terrestrial bird species.


Journal of Virology | 2004

A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro.

Eufemia Berkhoff; Adrianus C. M. Boon; Nella J. Nieuwkoop; Ron A. M. Fouchier; Krijn Sintnicolaas; Albert D. M. E. Osterhaus

ABSTRACT Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in or adjacent to CTL epitopes. Recently, an amino acid substitution (R384G) in an HLA-B*2705-restricted CTL epitope in the influenza A virus nucleoprotein (nucleoprotein containing residues 383 to 391 [NP383-391]; SRYWAIRTR, where R is the residue that was mutated) was associated with escape from CTL-mediated immunity. The effect of this mutation on the in vitro influenza A virus-specific CTL response was studied. To this end, two influenza A viruses, one with and one without the NP383-391 epitope, were constructed by reverse genetics and designated influenza viruses A/NL/94-384R and A/NL/94-384G, respectively. The absence of the HLA-B*2705-restricted CTL epitope in influenza virus A/NL/94-384G was confirmed by using 51Cr release assays with a T-cell clone specific for the NP383-391 epitope. In addition, peripheral blood mononuclear cells (PBMC) stimulated with influenza virus A/NL/94-384G failed to recognize HLA-B*2705-positive target cells pulsed with the original NP383-391 peptide. The proportion of virus-specific CD8+ gamma interferon (IFN-γ)-positive T cells in in vitro-stimulated PBMC was determined by intracellular IFN-γ staining after restimulation with virus-infected autologous B-lymphoblastoid cell lines and C1R cell lines expressing only HLA-B*2705. The proportion of virus-specific CD8+ T cells was lower in PBMC stimulated in vitro with influenza virus A/NL/94-384G obtained from several HLA-B*2705-positive donors than in PBMC stimulated with influenza virus A/NL/94-384R. This finding indicated that amino acid variations in CTL epitopes can affect the virus-specific CTL response and that the NP383-391 epitope is the most important HLA-B*2705-restricted epitope in the nucleoprotein of influenza A viruses.


Mbio | 2011

H5N1 Influenza Virus Pathogenesis in Genetically Diverse Mice Is Mediated at the Level of Viral Load

Adrianus C. M. Boon; David Finkelstein; Ming Zheng; Guochun Liao; John Allard; Klaus Klumpp; Robert G. Webster; Gary Peltz; Richard J. Webby

ABSTRACT The genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host’s immune response to the virus. In humans, it is unclear which aspect dictates the severity of H5N1 virus disease. To identify the mechanism underlying differential responses to H5N1 virus infection in a genetically diverse population, we assessed the host responses and lung viral loads in 21 inbred mouse strains upon intranasal inoculation with A/Hong Kong/213/03 (H5N1). Resistant mouse strains survived large inocula while susceptible strains succumbed to infection with 1,000- to 10,000-fold-lower doses. Quantitative analysis of the viral load after inoculation with an intermediate dose found significant associations with lethality as early as 2 days postinoculation, earlier than any other disease indicator. The increased viral titers in the highly susceptible strains mediated a hyperinflamed environment, indicated by the distinct expression profiles and increased production of inflammatory mediators on day 3. Supporting the hypothesis that viral load rather than an inappropriate response to the virus was the key severity-determining factor, we performed quantitative real-time PCR measuring the cytokine/viral RNA ratio. No significant differences between susceptible and resistant mouse strains were detected, confirming that it is the host genetic component controlling viral load, and therefore replication dynamics, that is primarily responsible for a host’s susceptibility to a given H5N1 virus. IMPORTANCE Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response. Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response.


Journal of Virology | 2010

Cross-Reactive Neutralizing Antibodies Directed against Pandemic H1N1 2009 Virus Are Protective in a Highly Sensitive DBA/2 Mouse Influenza Model

Adrianus C. M. Boon; Jennifer DeBeauchamp; Scott Krauss; Adam Rubrum; Ashley Webb; Robert G. Webster; Janet E. McElhaney; Richard J. Webby

ABSTRACT Our ability to rapidly respond to an emerging influenza pandemic is hampered somewhat by the lack of a susceptible small-animal model. To develop a more sensitive model, we pathotyped 18 low-pathogenic non-mouse-adapted influenza A viruses of human and avian origin in DBA/2 and C57BL/6 mice. The majority of the isolates (13/18) induced severe morbidity and mortality in DBA/2 mice upon intranasal challenge with 1 million infectious doses. Also, at a 100-fold-lower dose, more than 50% of the viruses induced severe weight loss, and mice succumbed to the infection. In contrast, only two virus strains were pathogenic for C57BL/6 mice upon high-dose inoculation. Therefore, DBA/2 mice are a suitable model to validate influenza A virus vaccines and antiviral therapies without the need for extensive viral adaptation. Correspondingly, we used the DBA/2 model to assess the level of protection afforded by preexisting pandemic H1N1 2009 virus (H1N1pdm) cross-reactive human antibodies detected by a hemagglutination inhibition assay. Passive transfer of these antibodies prior to infection protected mice from H1N1pdm-induced pathogenicity, demonstrating the effectiveness of these cross-reactive neutralizing antibodies in vivo.


Journal of Virology | 2011

Fatal Outcome of Pandemic H1N1 2009 Influenza Virus Infection Is Associated with Immunopathology and Impaired Lung Repair, Not Enhanced Viral Burden, in Pregnant Mice

Glendie Marcelin; Jerry R. Aldridge; Susu Duan; Hazem E. Ghoneim; Jerold E. Rehg; Henju Marjuki; Adrianus C. M. Boon; Jonathan A. McCullers; Richard J. Webby

ABSTRACT Pandemic A (H1N1) 2009 influenza virus (pH1N1) infection in pregnant women can be severe. The mechanisms that affect infection outcome in this population are not well understood. To address this, pregnant and nonpregnant BALB/c mice were inoculated with the wild-type pH1N1 strain A/California/04/09. To determine whether innate immune responses are associated with severe infection, we measured the innate cells trafficking into the lungs of pregnant versus nonpregnant animals. Increased infiltration of pulmonary neutrophils and macrophages strongly correlated with an elevated mortality in pregnant mice. In agreement with this, the product of nitric oxide (nitrite) and several cytokines associated with recruitment and/or function of these cells were increased in the lungs of pregnant animals. Surprisingly, increased mortality in pregnant mice was not associated with higher virus load because equivalent virus titers and immunohistochemical staining were observed in the nasal cavities or lungs of all mice. To determine whether exacerbated inflammatory responses and elevated cellularity resulted in lung injury, epithelial regeneration was measured. The lungs of pregnant mice exhibited reduced epithelial regeneration, suggesting impaired lung repair. Despite these immunologic alterations, pregnant animals demonstrated equivalent percentages of pulmonary influenza virus-specific CD8+ T lymphocytes, although they displayed elevated levels of T-regulator lymphocytes (Tregs) in the lung. Also, pregnant mice mounted equal antibody titers in response to virus or immunization with a monovalent inactivated pH1N1 A/California/07/09 vaccine. Therefore, immunopathology likely caused by elevated cellular recruitment is an implicated mechanism of severe pH1N1 infection in pregnant mice.


Cell Host & Microbe | 2016

Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis

Qun Lu; Christine C. Yokoyama; Jesse W. Williams; Megan T. Baldridge; Xiaohua Jin; Brittany L. DesRochers; Traci L. Bricker; Craig B. Wilen; Juhi Bagaitkar; Ekaterina Loginicheva; Alexey Sergushichev; Darren Kreamalmeyer; Brian C. Keller; Yan Zhao; Amal Kambal; Douglas R. Green; Jennifer Martinez; Mary C. Dinauer; Michael J. Holtzman; Erika C. Crouch; Wandy L. Beatty; Adrianus C. M. Boon; Hong Zhang; Gwendalyn J. Randolph; Maxim N. Artyomov; Herbert W. Virgin

Mutations in the autophagy gene EPG5 are linked to the multisystem human disease Vici syndrome, which is characterized in part by pulmonary abnormalities, including recurrent infections. We found that Epg5-deficient mice exhibited elevated baseline innate immune cellular and cytokine-based lung inflammation and were resistant to lethal influenza virus infection. Lung transcriptomics, bone marrow transplantation experiments, and analysis of cellular cytokine expression indicated that Epg5 plays a role in lung physiology through its function in macrophages. Deletion of other autophagy genes including Atg14, Fip200, Atg5, and Atg7 in myeloid cells also led to elevated basal lung inflammation and influenza resistance. This suggests that Epg5 and other Atg genes function in macrophages to limit innate immune inflammation in the lung. Disruption of this normal homeostatic dampening of lung inflammation results in increased resistance to influenza, suggesting that normal homeostatic mechanisms that limit basal tissue inflammation support some infectious diseases.


Science | 2017

The microbial metabolite desaminotyrosine protects from influenza through type I interferon

Ashley Steed; George P. Christophi; Gerard E. Kaiko; Lulu Sun; Victoria M. Goodwin; Umang Jain; Ekaterina Esaulova; Maxim N. Artyomov; David J. Morales; Michael J. Holtzman; Adrianus C. M. Boon; Deborah J. Lenschow; Thaddeus S. Stappenbeck

Eat more plants for influenza resilience Antibiotic treatment worsens influenza in mice, possibly because the concomitant loss of the microbiota interrupts the production of bioactive metabolites. Steed et al. found that a microbial product, desaminotyrosine (DAT), produced by an obligate clostridial anaerobe from the digestion of plant flavonoids, is beneficial during influenza. DAT enters the bloodstream and triggers type I interferon signaling, which then augments antiviral responses by phagocytic cells. Without DAT, influenza virus causes inflammation and severe disease. Science, this issue p. 498 A dietary plant flavonoid derivative, metabolized by Clostridium orbiscindens in the gut, mediates protective responses to influenza in mice. The microbiota is known to modulate the host response to influenza infection through as-yet-unclear mechanisms. We hypothesized that components of the microbiota exert effects through type I interferon (IFN), a hypothesis supported by analysis of influenza in a gain-of-function genetic mouse model. Here we show that a microbially associated metabolite, desaminotyrosine (DAT), protects from influenza through augmentation of type I IFN signaling and diminution of lung immunopathology. A specific human-associated gut microbe, Clostridium orbiscindens, produced DAT and rescued antibiotic-treated influenza-infected mice. DAT protected the host by priming the amplification loop of type I IFN signaling. These findings show that specific components of the enteric microbiota have distal effects on responses to lethal infections through modulation of type I IFN.


Journal of Virology | 2006

The Hypervariable Immunodominant NP418-426 Epitope from the Influenza A Virus Nucleoprotein Is Recognized by Cytotoxic T Lymphocytes with High Functional Avidity

Adrianus C. M. Boon; Gerrie de Mutsert; Ron A. M. Fouchier; Albert D. M. E. Osterhaus

ABSTRACT Recently it was shown that influenza A viruses can accumulate mutations in epitopes associated with escape from recognition by human virus-specific cytotoxic T lymphocytes (CTL). It is unclear what drives diversification of CTL epitopes and why certain epitopes are variable and others remain conserved. It has been shown that simian immunodeficiency virus-specific CTL that recognize their epitope with high functional avidity eliminate virus-infected cells efficiently and drive diversification of CTL epitopes. T-cell functional avidity is defined by the density of major histocompatibility complex class I peptide complexes required to activate specific CTL. We hypothesized that functional avidity of CTL contributes to epitope diversification and escape from CTL also for influenza viruses. To test this hypothesis, the functional avidity of polyclonal CTL populations specific for nine individual epitopes was determined. To this end, peripheral blood mononuclear cells from HLA-A- and -B-genotyped individuals were stimulated in vitro with influenza virus-infected cells to allow expansion of virus-specific CTL, which were used to determine the functional avidity of CTL specific for nine individual epitopes in enzyme-linked immunospot assays. We found that the functional avidity for the respective epitopes varied widely. Furthermore, the functional avidity of CTL specific for the hypervariable NP418-426 epitope was significantly higher than that of CTL recognizing other epitopes (P < 0.01). It was speculated that the high functional avidity of NP418-426-specific CTL was responsible for the diversification of this influenza A virus CTL epitope.

Collaboration


Dive into the Adrianus C. M. Boon's collaboration.

Top Co-Authors

Avatar

Richard J. Webby

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Graham D. Williams

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert G. Webster

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Amelia K. Pinto

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anshu P. Gounder

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Maxim N. Artyomov

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Traci L. Bricker

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anna Leavey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brian T. Edelson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brittany L. DesRochers

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge