Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrie H. Westphal is active.

Publication


Featured researches published by Adrie H. Westphal.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development

Cezary Smaczniak; Richard G. H. Immink; Jose M. Muiño; Robert Blanvillain; Marco Busscher; Jacqueline Busscher-Lange; Q. D. (Peter) Dinh; Shujing Liu; Adrie H. Westphal; François Parcy; Lin Xu; Cristel C. Carles; Gerco C. Angenent; Kerstin Kaufmann

Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the “floral quartet” model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action.


Archives of Biochemistry and Biophysics | 2014

Flavin dependent monooxygenases.

Mieke M.E. Huijbers; S. Montersino; Adrie H. Westphal; Dirk Tischler; Willem J. H. van Berkel

Flavin-dependent monooxygenases catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. As such, they are involved in key biological processes ranging from catabolism, detoxification and biosynthesis, to light emission and axon guidance. Based on fold and function, flavin-dependent monooxygenases can be distributed into eight groups. Groups A and B comprise enzymes that rely on NAD(P)H as external electron donor. Groups C-F are two-protein systems, composed of a monooxygenase and a flavin reductase. Groups G and H comprise internal monooxygenases that reduce the flavin cofactor through substrate oxidation. Recently, many new flavin-dependent monooxygenases have been discovered. In addition to posing basic enzymological questions, these proteins attract attention of pharmaceutical and fine-chemical industries, given their importance as regio- and enantioselective biocatalysts. In this review we present an update of the classification of flavin-dependent monooxygenases and summarize the latest advances in our understanding of their catalytic and structural properties.


Biochimica et Biophysica Acta | 1998

The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria

Aart de Kok; Annechien F. Hengeveld; Alejandro Martin; Adrie H. Westphal

Pyruvate dehydrogenase multi-enzyme complexes from Gram-negative bacteria consists of three enzymes, pyruvate dehydrogenase/decarboxylase (E1p), dihydrolipoyl acetyltransferase (E2p) and dihydrolipoyl dehydrogenase (E3). The acetyltransferase harbors all properties required for multi-enzyme catalysis: it forms a large core of 24 subunits, it contains multiple binding sites for the E1p and E3 components, the acetyltransferase catalytic site and mobile substrate carrying lipoyl domains that visit the active sites. Today, the Azotobacter vinelandii complex is the best understood oxo acid dehydrogenase complex with respect to structural details. A description of multi-enzyme catalysis starts with the structural and catalytic properties of the individual components of the complex. Integration of the individual properties is obtained by a description of how the many copies of the individual enzymes are arranged in the complex and how the lipoyl domains couple the activities of the respective active sites by way of flexible linkers. These latter aspects are the most difficult to study and future research need to be aimed at these properties.


Journal of Biological Chemistry | 2003

Phenol Hydroxylase from Bacillus thermoglucosidasius A7, a Two-protein Component Monooxygenase with a Dual Role for FAD

U. Kirchner; Adrie H. Westphal; Rudolf Müller; Willem J. H. van Berkel

A novel phenol hydroxylase (PheA) that catalyzes the first step in the degradation of phenol in Bacillus thermoglucosidasius A7 is described. The two-protein system, encoded by the pheA1 and pheA2 genes, consists of an oxygenase (PheA1) and a flavin reductase (PheA2) and is optimally active at 55 °C. PheA1 and PheA2 were separately expressed in recombinant Escherichia coli BL21(DE3) pLysS cells and purified to apparent homogeneity. The pheA1 gene codes for a protein of 504 amino acids with a predicted mass of 57.2 kDa. PheA1 exists as a homodimer in solution and has no enzyme activity on its own. PheA1 catalyzes the efficient ortho-hydroxylation of phenol to catechol when supplemented with PheA2 and FAD/NADH. The hydroxylase activity is strictly FAD-dependent, and neither FMN nor riboflavin can replace FAD in this reaction. The pheA2 gene codes for a protein of 161 amino acids with a predicted mass of 17.7 kDa. PheA2 is also a homodimer, with each subunit containing a highly fluorescent FAD prosthetic group. PheA2 catalyzes the NADH-dependent reduction of free flavins according to a Ping Pong Bi Bi mechanism. PheA2 is structurally related to ferric reductase, an NAD(P)H-dependent reductase from the hyperthermophilic Archaea Archaeoglobus fulgidus that catalyzes the flavin-mediated reduction of iron complexes. However, PheA2 displays no ferric reductase activity and is the first member of a newly recognized family of short-chain flavin reductases that use FAD both as a substrate and as a prosthetic group.


Journal of Biological Chemistry | 2004

Structural Studies on Flavin Reductase PheA2 Reveal Binding of NAD in an Unusual Folded Conformation and Support Novel Mechanism of Action

R.H.H. van den Heuvel; Adrie H. Westphal; Albert J. R. Heck; Martin A. Walsh; Stefano Rovida; W.J.H. van Berkel; Andrea Mattevi

The catabolism of toxic phenols in the thermophilic organism Bacillus thermoglucosidasius A7 is initiated by a two-component enzyme system. The smaller flavin reductase PheA2 component catalyzes the NADH-dependent reduction of free FAD according to a ping-pong bisubstrate-biproduct mechanism. The reduced FAD is then used by the larger oxygenase component PheA1 to hydroxylate phenols to the corresponding catechols. We have determined the x-ray structure of PheA2 containing a bound FAD cofactor (2.2 Å), which is the first structure of a member of this flavin reductase family. We have also determined the x-ray structure of reduced holo-PheA2 in complex with oxidized NAD (2.1 Å). PheA2 is a single domain homodimeric protein with each FAD-containing subunit being organized around a six-stranded β-sheet and a capping α-helix. The tightly bound FAD prosthetic group (Kd = 10 nm) binds near the dimer interface, and the re face of the FAD isoalloxazine ring is fully exposed to solvent. The addition of NADH to crystalline PheA2 reduced the flavin cofactor, and the NAD product was bound in a wide solvent-accessible groove adopting an unusual folded conformation with ring stacking. This is the first observation of an enzyme that is very likely to react with a folded compact pyridine nucleotide. The PheA2 crystallographic models strongly suggest that reactive exogenous FAD substrate binds in the NADH cleft after release of NAD product. Nanoflow electrospray mass spectrometry data indeed showed that PheA2 is able to bind one FAD cofactor and one FAD substrate. In conclusion, the structural data provide evidence that PheA2 contains a dual binding cleft for NADH and FAD substrate, which alternate during catalysis.


Plant Physiology | 2013

Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling.

Christoph A. Bücherl; G.W. van Esse; A. Kruis; J. Luchtenberg; Adrie H. Westphal; José Aker; A. van Hoek; Catherine Albrecht; Jan Willem Borst; S. de Vries

Initiation of brassinosteroid signal transduction involves a small number of preassembled BRI1-BAK1(SERK3) heterooligomers. The leucine-rich repeat receptor-like kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) is the main ligand-perceiving receptor for brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana). Binding of BRs to the ectodomain of plasma membrane (PM)-located BRI1 receptors initiates an intracellular signal transduction cascade that influences various aspects of plant growth and development. Even though the major components of BR signaling have been revealed and the PM was identified as the main site of BRI1 signaling activity, the very first steps of signal transmission are still elusive. Recently, it was shown that the initiation of BR signal transduction requires the interaction of BRI1 with its SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptors. In addition, the resolved structure of the BRI1 ectodomain suggested that BRI1-ASSOCIATED KINASE1 [BAK1](SERK3) may constitute a component of the ligand-perceiving receptor complex. Therefore, we investigated the spatial correlation between BRI1 and BAK1(SERK3) in the natural habitat of both leucine-rich repeat receptor-like kinases using comparative colocalization analysis and fluorescence lifetime imaging microscopy. We show that activation of BR signaling by exogenous ligand application resulted in both elevated colocalization between BRI1 and BAK1(SERK3) and an about 50% increase of receptor heterooligomerization in the PM of live Arabidopsis root epidermal cells. However, large populations of BRI1 and BAK1(SERK3) colocalized independently of BRs. Moreover, we could visualize that approximately 7% of the BRI1 PM pool constitutively heterooligomerizes with BAK1(SERK3) in live root cells. We propose that only small populations of PM-located BRI1 and BAK1(SERK3) receptors participate in active BR signaling and that the initiation of downstream signal transduction involves preassembled BRI1-BAK1(SERK3) heterooligomers.


Journal of Biological Chemistry | 2002

Changing the Substrate Reactivity of 2-Hydroxybiphenyl 3-Monooxygenase from Pseudomonas azelaica HBP1 by Directed Evolution

Andreas Meyer; Andreas Schmid; Martin Held; Adrie H. Westphal; Martina Röthlisberger; Hans-Peter E. Kohler; Willem J. H. van Berkel; Bernard Witholt

The substrate reactivity of the flavoenzyme 2-hydroxybiphenyl 3-monooxygenase (EC 1.14.13.44, HbpA) was changed by directed evolution using error-prone PCR. In situ screening of mutant libraries resulted in the identification of proteins with increased activity towards 2-tert-butylphenol and guaiacol (2-methoxyphenol). One enzyme variant contained amino acid substitutions V368A/L417F, which were inserted by two rounds of mutagenesis. The double replacement improved the efficiency of substrate hydroxylation by reducing the uncoupled oxidation of NADH. With guaiacol as substrate, the two substitutions increasedVmax from 0.22 to 0.43 units mg−1protein and decreased the K′ m from 588 to 143 μm, improvingk′cat/K′ m by a factor of 8.2. With 2-tert-butylphenol as the substrate,k′cat was increased more than 5-fold. Another selected enzyme variant contained amino acid substitution I244V and had a 30% higher specific activity with 2-sec-butylphenol, guaiacol, and the “natural” substrate 2-hydroxybiphenyl. TheK′ m for guaiacol decreased with this mutant, but the K′ m for 2-hydroxybiphenyl increased. The primary structure of HbpA shares 20.1% sequence identity with phenol 2-monooxygenase from Trichosporon cutaneum. Structure homology modeling with this three-domain enzyme suggests that Ile244 of HbpA is located in the substrate binding pocket and is involved in accommodating the phenyl substituent of the phenol. In contrast, Val368 and Leu417 are not close to the active site and would not have been obvious candidates for modification by rational design.


Journal of Biological Chemistry | 2008

Macromolecular crowding compacts unfolded apoflavodoxin and causes severe aggregation of the off-pathway intermediate during apoflavodoxin folding.

Ruchira Engel; Adrie H. Westphal; D.H.E.W. Huberts; Sanne M. Nabuurs; Simon Lindhoud; Antonie J. W. G. Visser; C.P.M. Van Mierlo

To understand how proteins fold in vivo, it is important to investigate the effects of macromolecular crowding on protein folding. Here, the influence of crowding on in vitro apoflavodoxin folding, which involves a relatively stable off-pathway intermediate with molten globule characteristics, is reported. To mimic crowded conditions in cells, dextran 20 at 30% (w/v) is used, and its effects are measured by a diverse combination of optical spectroscopic techniques. Fluorescence correlation spectroscopy shows that unfolded apoflavodoxin has a hydrodynamic radius of 37 ± 3 Å at 3 m guanidine hydrochloride. Förster resonance energy transfer measurements reveal that subsequent addition of dextran 20 leads to a decrease in protein volume of about 29%, which corresponds to an increase in protein stability of maximally 1.1 kcal mol–1. The compaction observed is accompanied by increased secondary structure, as far-UV CD spectroscopy shows. Due to the addition of crowding agent, the midpoint of thermal unfolding of native apoflavodoxin rises by 2.9 °C. Although the stabilization observed is rather limited, concomitant compaction of unfolded apoflavodoxin restricts the conformational space sampled by the unfolded state, and this could affect kinetic folding of apoflavodoxin. Most importantly, crowding causes severe aggregation of the off-pathway folding intermediate during apoflavodoxin folding in vitro. However, apoflavodoxin can be over expressed in the cytoplasm of Escherichia coli, where it efficiently folds to its functional native form at high yield without noticeable problems. Apparently, in the cell, apoflavodoxin requires the help of chaperones like Trigger Factor and the DnaK system for efficient folding.


Journal of Immunology | 2002

A novel functional class I lineage in zebrafish (Danio rerio), carp (Cyprinus carpio), and large barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains.

Corine P. Kruiswijk; Trudi Hermsen; Adrie H. Westphal; H.F.J. Savelkoul; R.J.M. Stet

Species from all major jawed vertebrate taxa possess linked polymorphic class I and II genes located in an MHC. The bony fish are exceptional with class I and II genes located on different linkage groups. Zebrafish (Danio rerio), common carp (Cyprinus carpio), and barbus (Barbus intermedius) represent highly divergent cyprinid genera. The genera Danio and Cyprinus diverged 50 million years ago, while Cyprinus and Barbus separated 30 million years ago. In this study, we report the first complete protein-coding class I ZE lineage cDNA sequences with high similarity between the three cyprinid species. Two unique complete protein-coding cDNA sequences were isolated in zebrafish, Dare-ZE*0101 and Dare-ZE*0102, one in common carp, Cyca-ZE*0101, and six in barbus, Bain-ZE*0101, Bain-ZE*0102, Bain-ZE*0201, Bain-ZE*0301, Bain-ZE*0401, and Bain-ZE*0402. Deduced amino acid sequences indicate that these sequences encode bonafide class I proteins. In addition, the presence of conserved potential peptide anchoring residues, exon-intron organization, ubiquitous expression, and polymorphism generated by positive selection on putative peptide binding residues support a classical nature of class I ZE lineage genes. Phylogenetic analyses revealed clustering of the ZE lineage clade with nonclassical cyprinid class I Z lineage clade away from classical cyprinid class I genes, suggesting a common ancestor of these nonclassical genes as observed for mammalian class I genes. Data strongly support the classical nature of these ZE lineage genes that evolved in a trans-species fashion with lineages being maintained for up to 100 million years as estimated by divergence time calculations.


Immunogenetics | 2005

Novel immunoglobulin-like transcripts in teleost fish encode polymorphic receptors with cytoplasmic ITAM or ITIM and a new structural Ig domain similar to the natural cytotoxicity receptor NKp44.

R.J.M. Stet; Trudi Hermsen; Adrie H. Westphal; Jojanneke Jukes; M.Y. Engelsma; B.M. Lidy Verburg-van Kemenade; Jos Dortmans; Joao Aveiro; H.F.J. Savelkoul

Members of the immunoglobulin superfamily (IgSF) include a group of innate immune receptors located in the leukocyte receptor complex (LRC) and other small clusters such as the TREM/NKp44 cluster. These receptors are characterised by the presence of immunoglobulin domains, a stalk, a transmembrane domain, and a cytoplasmic region containing either an immunoreceptor tyrosine-based inhibitory motif (ITIM) or are linked to an adapter molecule with an activation motif (ITAM) for downstream signalling. We have isolated two carp cDNA sequences encoding receptors in which the extracellular Ig domain structurally resembles the novel V-type Ig domain of NKp44. This is supported by a homology model. The cytoplasmic regions contain either an ITAM (Cyca-NILT1) or ITIMs (Cyca-NILT2). The tissue expression of these receptors is nearly identical, with the highest expression in the immunological organs. Peripheral blood leucocytes showed no detectable expression, but upon in vitro culture expressed NILT1, the activating receptor, and not the inhibitory NILT2 receptor. Southern blot analysis indicated that the NILT1 and NILT2 sequences belong to a multigene family. Analysis of the NILT Ig domain-encoding sequences amplified from both genomic DNA and cDNA revealed extensive haplotypic and allelic polymorphism. Database mining of the zebrafish genome identified several homologs on Chromosome 1, which also contains a cluster of class I major histocompatibility genes. This constellation is reminiscent of the TREM/NKp44 gene cluster and the HLA complex located on human Chromosome 6. The carp NILT genes form a unique cluster of innate immune receptors, which are highly polymorphic, and characterised by a new Ig structural subfamily and are distinct from the novel immune-type receptors (Nitrs) found in other fish species.

Collaboration


Dive into the Adrie H. Westphal's collaboration.

Top Co-Authors

Avatar

Willem J. H. van Berkel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jan Willem Borst

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Antonie J. W. G. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Carlo P. M. van Mierlo

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W.J.H. van Berkel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dirk Tischler

Freiberg University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

A. de Kok

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

H.F.J. Savelkoul

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Harry Gruppen

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge