Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrien Nicolaï is active.

Publication


Featured researches published by Adrien Nicolaï.


Physical Chemistry Chemical Physics | 2014

Tunable water desalination across graphene oxide framework membranes

Adrien Nicolaï; Bobby G. Sumpter; Vincent Meunier

The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection of GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure ΔP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from ∼5 (n = 32 and h = 6.5 nm) to 400 L cm(-2) day(-1) MPa(-1) (n = 64 and h = 2.5 nm) and follows a Cnh(-αn) law. For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n ≤ 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (ΔP ∼ 10 MPa and h ∼ 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL cm(-2) day(-1) MPa(-1) to a few L cm(-2) day(-1) MPa(-1).


ACS Nano | 2015

On-Surface Synthesis of BN-Substituted Heteroaromatic Networks.

Carlos M. Sánchez-Sánchez; Sebastian Brüller; Hermann Sachdev; Klaus Müllen; Matthias Krieg; Holger F. Bettinger; Adrien Nicolaï; Vincent Meunier; Leopold Talirz; Roman Fasel; Pascal Ruffieux

We report on the bottom-up fabrication of BN-substituted heteroaromatic networks achieved by surface-assisted polymerization and subsequent cyclodehydrogenation of specifically designed BN-substituted precursor monomers based on a borazine core structural element. To get insight into the cyclodehydrogenation pathway and the influence of molecular flexibility on network quality, two closely related precursor monomers with different degrees of internal cyclodehydrogenation have been employed. Scanning tunneling microscopy shows that, for both monomers, surface-assisted cyclodehydrogenation allows for complete monomer cyclization and the formation of covalently interlinked BN-substituted polyaromatic hydrocarbon networks on the Ag(111) surface. In agreement with experimental observations, density functional theory calculations reveal a significantly lower energy barrier for the cyclodehydrogenation of the conformationally more rigid precursor monomer, which is also reflected in a higher degree of long-range order of the obtained heteroaromatic network. Our proof-of-concept study will allow for the fabrication of atomically precise substitution patterns within BNC heterostructures.


ACS Nano | 2015

DNA Translocation in Nanometer Thick Silicon Nanopores.

Julio A. Rodríguez-Manzo; Matthew Puster; Adrien Nicolaï; Vincent Meunier; Marija Drndic

Solid-state nanopores are single-molecule sensors that detect changes in ionic conductance (ΔG) when individual molecules pass through them. Producing high signal-to-noise ratio for the measurement of molecular structure in applications such as DNA sequencing requires low noise and large ΔG. The latter is achieved by reducing the nanopore diameter and membrane thickness. While the minimum diameter is limited by the molecule size, the membrane thickness is constrained by material properties. We use molecular dynamics simulations to determine the theoretical thickness limit of amorphous Si membranes to be ∼1 nm, and we designed an electron-irradiation-based thinning method to reach that limit and drill nanopores in the thinned regions. Double-stranded DNA translocations through these nanopores (down to 1.4 nm in thickness and 2.5 nm in diameter) provide the intrinsic ionic conductance detection limit in Si-based nanopores. In this regime, where the access resistance is comparable to the nanopore resistance, we observe the appearance of two conductance levels during molecule translocation. Considering the overall performance of Si-based nanopores, our work highlights their potential as a leading material for sequencing applications.


Journal of Chemical Theory and Computation | 2013

Molecular Dynamics Simulations of Graphene Oxide Frameworks

Adrien Nicolaï; Pan Zhu; Bobby G. Sumpter; Vincent Meunier

We use quantum mechanical calculations to develop a full set of force field parameters in order to perform molecular dynamics simulations to understand and optimize the molecular storage properties inside graphene oxide frameworks (GOFs). A set of boron-related parameters for commonly used empirical force fields is determined to describe the nonbonded and bonded interactions between linear boronic acid linkers and graphene sheets of GOF materials. The transferability of the parameters is discussed and their validity is quantified by comparing quantum mechanical and molecular mechanical structural and vibrational properties. The application of the model to the dynamics of water inside the GOFs reveals significant variations in structural flexibility depending on the linker density, which is shown to be usable as a tuning parameter for desired diffusion properties.


PLOS Computational Biology | 2013

Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

Adrien Nicolaï; Patrice Delarue; Patrick Senet

ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins.


Journal of Biomolecular Structure & Dynamics | 2013

Conformational dynamics of full-length inducible human Hsp70 derived from microsecond molecular dynamics simulations in explicit solvent

Adrien Nicolaï; Patrice Delarue; Patrick Senet

Human 70 kDa heat shock protein (hHsp70) is an ATP-dependent chaperone and is currently an important target for developing new drugs in cancer therapy. Knowledge of the conformations of hHsp70 is central to understand the interactions between its nucleotide-binding domain (NBD) and substrate-binding domain (SBD) and is a prerequisite to design inhibitors. The conformations of ADP-bound (or nucleotide-free) hHsp70 and ATP-bound hHsp70 was investigated by using unbiased all-atom molecular dynamics (MD) simulations of homology models of hHsp70 in explicit solvent on a timescale of .5 and 2.7 μs, respectively. The conformational heterogeneity of hHsp70 was analyzed by computing effective free-energy landscapes (FELs) and distance distribution between selected pair of residues. These theoretical data were compared with those extracted from single-molecule Förster resonance energy transfer (FRET) experiments and to small-angle X-ray scattering (SAXS) data of Hsp70 homologs. The distance between a pair of residues in FRET is systematically larger than the distance computed in MD which is interpreted as an effect of the size and of the dynamics of the fluorescent probes. The origin of the conformational heterogeneity of hHsp70 in the ATP-bound state is due to different binding modes of the helix B of the SBD onto the NBD. In the ADP-bound (or nucleotide-free) state, it arises from the different closed conformations of the SBD and from the different positions of the SBD relative to the NBD. In each nucleotide-binding state, Hsp70 is better represented by an ensemble of conformations on a μs timescale corresponding to different local minima of the FEL. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:30


Accounts of Chemical Research | 2014

Interfacial Properties and Design of Functional Energy Materials

Bobby G. Sumpter; Liangbo Liang; Adrien Nicolaï; Vincent Meunier

CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design by providing atomic level understanding of the underlying physicochemical phenomena (illuminating connections between experiments). It can also provide the ability to explore new materials and conditions before they are realized in the laboratory. With tight integration and feedback with experiment, it becomes feasible to identify promising materials or processes for targeted energy applications. In this Account, we highlight recent advances and success in using an integrated approach based on electronic structure simulations and scanning probe microscopy techniques to study and design functional materials formed from the self-assembly of molecules into supramolecular or polymeric architectures on substrates.


Insect Biochemistry and Molecular Biology | 2018

Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification

Daniel Gonzalez; Stéphane Fraichard; Paul Grassein; Patrice Delarue; Patrick Senet; Adrien Nicolaï; Evelyne Chavanne; Elodie Mucher; Yves Artur; Jean-François Ferveur; Jean-Marie Heydel; Loïc Briand; Fabrice Neiers

Glutathione transferases (GSTs) are ubiquitous key enzymes that catalyse the conjugation of glutathione to xenobiotic compounds in the detoxification process. GSTs have been proposed to play a dual role in the signal termination of insect chemodetection by modifying odorant and tasting molecules and by protecting the chemosensory system. Among the 40 GSTs identified in Drosophila melanogaster, the Delta and Epsilon groups are insect-specific. GSTs Delta and Epsilon may have evolved to serve in detoxification, and have been associated with insecticide resistance. Here, we report the heterologous expression and purification of the D. melanogaster GST Delta 2 (GSTD2). We investigated the capacity of GSTD2 to bind tasting molecules. Among them, we found that isothiocyanates (ITC), insecticidal compounds naturally present in cruciferous plant and perceived as bitter, are good substrates for GSTD2. The X-ray structure of GSTD2 was solved, showing the absence of the classical Ser catalytic residue, conserved in the Delta and Epsilon GSTs. Using molecular dynamics, the interaction of ITC with the GSTD2 three-dimensional structure is analysed and discussed. These findings allow us to consider a biological role for GSTD2 in chemoperception, considering GSTD2 expression in the chemosensory organs and the potential consequences of insect exposure to ITC.


Journal of the American Chemical Society | 2017

On-Surface Cyclization of ortho-Dihalotetracenes to Four- and Six-Membered Rings

Carlos M. Sánchez-Sánchez; Adrien Nicolaï; Frédéric Rossel; Jinming Cai; Junzhi Liu; Xinliang Feng; Klaus Müllen; Pascal Ruffieux; Roman Fasel; Vincent Meunier

We report on the surface-catalyzed formal [2+2] and [2+2+2] cycloadditions of ortho-activated tetracene species on a Ag(111) substrate under ultrahigh vacuum conditions. Three different products are obtained: tetracene dimers, trimers, and tetramers. The former results from the formation of a four-membered ring while the other two arise from cyclization into six-membered rings. These on-surface reactions have been monitored by scanning tunneling microscopy and rationalized by density functional theory calculations. Our approach, based on the reaction of ortho-dihalo precursor monomers via formal cycloadditions, establishes an additional method for the highly active field of on-surface synthesis and enables the development of novel 1D and 2D covalent carbon nanostructures.


Scientific Reports | 2016

Intrinsic Localized Modes in Proteins.

Adrien Nicolaï; Patrice Delarue; Patrick Senet

Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states).

Collaboration


Dive into the Adrien Nicolaï's collaboration.

Top Co-Authors

Avatar

Vincent Meunier

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Patrice Delarue

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marija Drndic

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bobby G. Sumpter

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew Puster

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Ruffieux

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Colin Daniels

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge