Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrienne B. Nicotra is active.

Publication


Featured researches published by Adrienne B. Nicotra.


Trends in Plant Science | 2010

Plant phenotypic plasticity in a changing climate

Adrienne B. Nicotra; Owen K. Atkin; Stephen P. Bonser; Amy Michelle Davidson; E.J. Finnegan; Ulrike Mathesius; Pieter Poot; Michael D. Purugganan; Christina L. Richards; Fernando Valladares; M. Van Kleunen

Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change.


Ecology Letters | 2011

Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta‐analysis

Amy Michelle Davidson; Michael D. Jennions; Adrienne B. Nicotra

Do invasive plant species have greater phenotypic plasticity than non-invasive species? And, if so, how does this affect their fitness relative to native, non-invasive species? What role might this play in plant invasions? To answer these long-standing questions, we conducted a meta-analysis using data from 75 invasive/non-invasive species pairs. Our analysis shows that invasive species demonstrate significantly higher phenotypic plasticity than non-invasive species. To examine the adaptive benefit of this plasticity, we plotted fitness proxies against measures of plasticity in several growth, morphological and physiological traits to test whether greater plasticity is associated with an improvement in estimated fitness. Invasive species were nearly always more plastic in their response to greater resource availability than non-invasives but this plasticity was only sometimes associated with a fitness benefit. Intriguingly, non-invasive species maintained greater fitness homoeostasis when comparing growth between low and average resource availability. Our finding that invasive species are more plastic in a variety of traits but that non-invasive species respond just as well, if not better, when resources are limiting, has interesting implications for predicting responses to global change.


Functional Plant Biology | 2011

The evolution and functional significance of leaf shape in the angiosperms

Adrienne B. Nicotra; Andrea Leigh; C. Kevin Boyce; Cynthia S. Jones; Karl J. Niklas; Dana L. Royer; Hirokazu Tsukaya

Angiosperm leaves manifest a remarkable diversity of shapes that range from developmental sequences within a shoot and within crown response to microenvironment to variation among species within and between communities and among orders or families. It is generally assumed that because photosynthetic leaves are critical to plant growth and survival, variation in their shape reflects natural selection operating on function. Several non-mutually exclusive theories have been proposed to explain leaf shape diversity. These include: thermoregulation of leaves especially in arid and hot environments, hydraulic constraints, patterns of leaf expansion in deciduous species, biomechanical constraints, adaptations to avoid herbivory, adaptations to optimise light interception and even that leaf shape variation is a response to selection on flower form. However, the relative importance, or likelihood, of each of these factors is unclear. Here we review the evolutionary context of leaf shape diversification, discuss the proximal mechanisms that generate the diversity in extant systems, and consider the evidence for each the above hypotheses in the context of the functional significance of leaf shape. The synthesis of these broad ranging areas helps to identify points of conceptual convergence for ongoing discussion and integrated directions for future research.


Oecologia | 2003

Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency

Vivien P. Thomson; Saul A. Cunningham; Marilyn C. Ball; Adrienne B. Nicotra

Abstract. Herbivory is an important selective pressure in the life history of most plant species, as it usually results in reduced plant fitness. In some situations, however, plants are able to compensate for the resources lost to herbivory and do not suffer any reduction in growth or reproduction after attack. We examined the ability of Lebanese cucumber (Cucumis sativus) to compensate for both pre-flowering and during-flowering foliar herbivory through increased photosynthetic efficiency and capacity. Plants that were damaged before flowering were able to compensate, in terms of vegetative biomass and fruit production for up to 80% leaf area loss. Plants that were damaged during the flowering period were less able to compensate and fruit production declined with increasing herbivory. Damaged plants had higher photosynthetic efficiency and capacity, and dissipated less light energy as heat. Herbivore-damaged plants may be induced to use a greater proportion of the absorbed light energy for photosynthesis as a result of altered carbohydrate source-sink relationships.


Oecologia | 2002

Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts

Adrienne B. Nicotra; N Babicka; Mark Westoby

We examined patterns of seedling root architecture, morphology and anatomy in Australian perennial plants chosen as phylogenetically independent contrasts (PICs) for rainfall in the areas they inhabit. Our objective was to assess whether there are consistent evolutionary patterns in structure of seedling root systems in species from different rainfall environments when examined across multiple evolutionary lineages. Seedlings were grown to a standardised developmental stage under controlled conditions. We found that seedling root systems of species restricted to low rainfall environments are characterised by greater proportional allocation to main root axis and have proportionally smaller main root axis diameter and areas of stele and xylem. Species of low rainfall environments also had higher specific root length (SRL) of the main axis, but lower SRL when the entire root system was considered. Seedling root system elongation rates were higher in species of high rainfall relative to those of low rainfall environments, paralleling expected differences in relative growth rate. The higher root system elongation rates in species of high rainfall environments were associated with greater numbers of growing tips in the root system, but not with differences in elongation rates of individual tips, relative to species of low rainfall environments.


Functional Plant Biology | 2010

Adaptive phenotypic plasticity and plant water use

Adrienne B. Nicotra; Amy Michelle Davidson

The emergence of new techniques in plant science, including molecular and phenomic tools, presents a novel opportunity to re-evaluate the way we examine the phenotype. Our increasing capacity for phenotyping means that not only can we consider increasing numbers of species or varieties, but also that we can effectively quantify the phenotypes of these different genotypes under a range of environmental conditions. The phenotypic plasticity of a given genotype, or the range of phenotypes, that can be expressed dependent upon environment becomes something we can feasibly assess. Of particular importance is phenotypic variation that increases fitness or survival – adaptive phenotypic plasticity. Here, we examine the case of adaptive phenotypic plasticity in plant water use traits and consider how taking an ecological and evolutionary perspective on plasticity in these traits might have relevance for agriculture, horticulture and the management of native and invasive plant species in an era of rapid climate change.


Plant Cell and Environment | 2009

Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency

Mt Harrison; Everard Edwards; Graham D. Farquhar; Adrienne B. Nicotra; John R. Evans

Photosynthetic rate per unit nitrogen generally declines as leaf mass per unit area (LMA) increases. To determine how much of this decline was associated with allocating a greater proportion of leaf nitrogen into cell wall material, we compared two groups of plants. The first group consisted of two species from each of eight genera, all of which were perennial evergreens growing in the Australian National Botanic Gardens (ANBG). The second group consisted of seven Eucalyptus species growing in a greenhouse. The percentage of leaf biomass in cell walls was independent of variation in LMA within any genus, but varied from 25 to 65% between genera. The nitrogen concentration of cell wall material was 0.4 times leaf nitrogen concentration for all species apart from Eucalyptus, which was 0.6 times leaf nitrogen concentration. Between 10 and 30% of leaf nitrogen was recovered in the cell wall fraction, but this was independent of LMA. No trade-off was observed between nitrogen associated with cell walls and the nitrogen allocated to ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco). Variation in photosynthetic rate per unit nitrogen could not be explained by variation in cell wall nitrogen.


American Journal of Botany | 1997

PATTERNS OF GENOTYPIC VARIATION AND PHENOTYPIC PLASTICITY OF LIGHT RESPONSE IN TWO TROPICAL PIPER (PIPERACEAE) SPECIES

Adrienne B. Nicotra; Robin L. Chazdon; Carl D. Schlichting

Patterns of phenotypic plasticity and genotypic variation in light response of growth and photosynthesis were examined in two species of rain forest shrub that differ in ecological distribution within the forest. We further examined correlations among photosynthetic and growth traits. We hypothesized that the pioneer species, Piper sancti-felicis, would display greater phenotypic plasticity than the shade-tolerant species, Piper arieianum. We further proposed that, in both species, genotypic effects would be more apparent in growth-related traits than photosynthetic traits due to more concentrated selection pressure on gas-exchange traits. P. sancti-felicis did not demonstrate greater phenotypic plasticity of light response. Although many of the traits measured had significant genotype effects, neither species showed any significant effects of genotype on light response of photosynthesis, suggesting little genetic variation for this trait within populations. A principal components analysis clearly illustrated both species and light effects, with the treatments dividing neatly along the axis of the first principal component and the species separating along the second principal component axis. Results indicated general similarities between the species in their trait correlation structure and level of integration among traits, but characteristic differences were observed in the patterns of change between low and high light. Both species had more correlations than expected within groups of growth-related or photosynthetic traits; strong correlations of traits between these two groups were underrepresented. The similar pattern of genetic variation and phenotypic integration observed in these two congeners may be due more to their close phylogenetic relation than to their ecological distributions.


Oecologia | 2008

Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species

Adrienne B. Nicotra; Meredith Cosgrove; Ann Cowling; Carl D. Schlichting; Cynthia S. Jones

The thermal response of gas exchange varies among plant species and with growth conditions. Plants from hot dry climates generally reach maximal photosynthetic rates at higher temperatures than species from temperate climates. Likewise, species in these environments are predicted to have small leaves with more-dissected shapes. We compared eight species of Pelargonium (Geraniaceae) selected as phylogenetically independent contrasts on leaf shape to determine whether: (1) the species showed plasticity in thermal response of gas exchange when grown under different water and temperature regimes, (2) there were differences among more- and less-dissected leafed species in trait means or plasticity, and (3) whether climatic variables were correlated with the responses. We found that a higher growth temperature led to higher optimal photosynthetic temperatures, at a cost to photosynthetic capacity. Optimal temperatures for photosynthesis were greater than the highest growth temperature regime. Stomatal conductance responded to growth water regime but not growth temperature, whereas transpiration increased and water use efficiency (WUE) decreased at the higher growth temperature. Strikingly, species with more-dissected leaves had higher rates of carbon gain and water loss for a given growth condition than those with less-dissected leaves. Species from lower latitudes and lower rainfall tended to have higher photosynthetic maxima and conductance, but leaf dissection did not correlate with climatic variables. Our results suggest that the combination of dissected leaves, higher photosynthetic rates, and relatively low WUE may have evolved as a strategy to optimize water delivery and carbon gain during short-lived periods of high soil moisture. Higher thermal optima, in conjunction with leaf dissection, may reflect selection pressure to protect photosynthetic machinery against excessive leaf temperatures when stomata close in response to water stress.


Journal of Chemical Ecology | 2013

The Impact of Beneficial Plant-Associated Microbes on Plant Phenotypic Plasticity

Chooi‐Hua Goh; Debora F. Veliz Vallejos; Adrienne B. Nicotra; Ulrike Mathesius

Plants show phenotypic plasticity in response to changing or extreme abiotic environments; but over millions of years they also have co-evolved to respond to the presence of soil microbes. Studies on phenotypic plasticity in plants have focused mainly on the effects of the changing environments on plants’ growth and survival. Evidence is now accumulating that the presence of microbes can alter plant phenotypic plasticity in a broad range of traits in response to a changing environment. In this review, we discuss the effects of microbes on plant phenotypic plasticity in response to changing environmental conditions, and how this may affect plant fitness. By using a range of specific plant-microbe interactions as examples, we demonstrate that one way that microbes can alleviate the effect of environmental stress on plants and thus increase plant fitness is to remove the stress, e.g., nutrient limitation, directly. Furthermore, microbes indirectly affect plant phenotypic plasticity and fitness through modulation of plant development and defense responses. In doing so, microbes affect fitness by both increasing or decreasing the degree of phenotypic plasticity, depending on the phenotype and the environmental stress studied, with no clear difference between the effect of prokaryotic and eukaryotic microbes in general. Additionally, plants have the ability to modulate microbial behaviors, suggesting that they manipulate bacteria, enhancing interactions that help them cope with stressful environments. Future challenges remain in the identification of the many microbial signals that modulate phenotypic plasticity, the characterization of plant genes, e.g. receptors, that mediate the microbial effects on plasticity, and the elucidation of the molecular mechanisms that link phenotypic plasticity with fitness. The characterization of plant and microbial mutants defective in signal synthesis or perception, together with carefully designed glasshouse or field experiments that test various environmental stresses will be necessary to understand the link between molecular mechanisms controlling plastic phenotypes with the resulting effects on plant fitness.

Collaboration


Dive into the Adrienne B. Nicotra's collaboration.

Top Co-Authors

Avatar

Gemma L. Hoyle

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Saul A. Cunningham

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Anne Cochrane

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Colin J. Yates

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Marilyn C. Ball

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Wood

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Roger Good

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Ulrike Mathesius

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge