Adrienne Laskowski
Royal Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adrienne Laskowski.
Science Translational Medicine | 2012
Sarah E. Calvo; Alison G. Compton; Steven G. Hershman; Sze Chern Lim; Daniel S. Lieber; Elena J. Tucker; Adrienne Laskowski; Caterina Garone; Shangtao Liu; David B. Jaffe; John Christodoulou; Janice M. Fletcher; Damien L. Bruno; Jack Goldblatt; Salvatore DiMauro; David R. Thorburn; Vamsi K. Mootha
Applying next-generation sequencing to 42 infants with mitochondrial disease highlights both the potential and the challenge of using this technology in clinical diagnosis. Getting to the Genetic Root of Mitochondrial Disease Next-generation DNA sequencing is being applied with great success in research settings to uncover new disease genes. Despite these successes, it is unclear how useful the technology will be for routine clinical diagnosis given the challenge of interpreting DNA variations in individual patients. In a new study, Calvo and colleagues apply next-generation sequencing to infants with mitochondrial disorders, a large collection of inherited diseases that are notoriously difficult to diagnose because of the multitude of candidate genes and the highly variable nature of the clinical presentation. First, the authors selected 42 unrelated infants with mitochondrial diseases that were refractory to standard clinical genetic testing. Then, for each child, they sequenced the DNA of the mitochondrial genome, the 100 genes previously linked to mitochondrial disease, and the ~1000 additional genes that are known to participate in mitochondrial biology. Of all the DNA differences present in the patients, the researchers prioritized those that were rare in the general population, predicted to disrupt protein function, and inherited in a recessive fashion. Such variants showed fivefold enrichment in the patients compared to that in healthy control individuals. In 10 patients (24%), firm molecular diagnoses were made in genes previously linked to mitochondrial diseases; 13 patients (31%) had prioritized recessive mutations in genes not previously linked to disease. For two of these genes, the authors were able to show that the mutations caused the mitochondrial disorder. These results suggest that next-generation sequencing may be able to provide a molecular diagnosis for ~25% of currently unsolved cases of infantile mitochondrial disease. An additional 25% of cases could be solved in the coming few years as more genes are formally proven to be linked to mitochondrial disease. The remaining 50% of patients in whom diagnosis was not possible underscores the challenge of interpreting DNA sequence data for clinical diagnosis. Nevertheless, the study by Calvo and colleagues will help to calibrate clinicians’ expectations regarding the diagnostic use of next-generation sequencing. Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. Although in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic use, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with more than 100 causal genes identified to date. We performed “MitoExome” sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Because patients and healthy control individuals harbored a comparable number of such heterozygous alleles, we could not prioritize dominant-acting genes. However, patients showed a fivefold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23 of 42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. Thirteen patients (31%) had mutations in nuclear genes not previously linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by complementation studies and evidence from multiple patients, respectively. The results underscore the potential and challenges of deploying NGS in clinical settings.
Journal of The American Society of Nephrology | 2009
Melinda T. Coughlan; David R. Thorburn; Sally A. Penfold; Adrienne Laskowski; Brooke E. Harcourt; Karly C. Sourris; Adeline L.Y. Tan; Kei Fukami; Vicki Thallas-Bonke; Peter P. Nawroth; Michael Brownlee; Angelika Bierhaus; Mark E. Cooper; Josephine M. Forbes
Damaged mitochondria generate an excess of superoxide, which may mediate tissue injury in diabetes. We hypothesized that in diabetic nephropathy, advanced glycation end-products (AGEs) lead to increases in cytosolic reactive oxygen species (ROS), which facilitate the production of mitochondrial superoxide. In normoglycemic conditions, exposure of primary renal cells to AGEs, transient overexpression of the receptor for AGEs (RAGE) with an adenoviral vector, and infusion of AGEs to healthy rodents each induced renal cytosolic oxidative stress, which led to mitochondrial permeability transition and deficiency of mitochondrial complex I. Because of a lack of glucose-derived NADH, which is the substrate for complex I, these changes did not lead to excess production of mitochondrial superoxide; however, when we performed these experiments in hyperglycemic conditions in vitro or in diabetic rats, we observed significant generation of mitochondrial superoxide at the level of complex I, fueled by a sustained supply of NADH. Pharmacologic inhibition of AGE-RAGE-induced mitochondrial permeability transition in vitro abrogated production of mitochondrial superoxide; we observed a similar effect in vivo after inhibiting cytosolic ROS production with apocynin or lowering AGEs with alagebrium. Furthermore, RAGE deficiency prevented diabetes-induced increases in renal mitochondrial superoxide and renal cortical apoptosis in mice. Taken together, these studies suggest that AGE-RAGE-induced cytosolic ROS production facilitates mitochondrial superoxide production in hyperglycemic environments, providing further evidence of a role for the advanced glycation pathway in the development and progression of diabetic nephropathy.
Developmental Cell | 2008
Jorg-Detlef Christian Drenckhahn; Quenten Schwarz; Stephen P. Gray; Adrienne Laskowski; Helen Kiriazis; Ziqui Ming; Richard P. Harvey; Xiao-Jun Du; David R. Thorburn; Timothy C. Cox
Energy generation by mitochondrial respiration is an absolute requirement for cardiac function. Here, we used a heart-specific conditional knockout approach to inactivate the X-linked gene encoding Holocytochrome c synthase (Hccs), an enzyme responsible for activation of respiratory cytochromes c and c1. Heterozygous knockout female mice were thus mosaic for Hccs function due to random X chromosome inactivation. In contrast to midgestational lethality of Hccs knockout males, heterozygous females appeared normal after birth. Analyses of heterozygous embryos revealed the expected 50:50 ratio of Hccs deficient to normal cardiac cells at midgestation; however, diseased tissue contributed progressively less over time and by birth represented only 10% of cardiac tissue volume. This change is accounted for by increased proliferation of remaining healthy cardiac cells resulting in a fully functional heart. These data reveal an impressive regenerative capacity of the fetal heart that can compensate for an effective loss of 50% of cardiac tissue.
Journal of Biological Chemistry | 2012
Dillon W. Leong; Jasper C. Komen; Chelsee A. Hewitt; Estelle Arnaud; Matthew McKenzie; Belinda Phipson; Melanie Bahlo; Adrienne Laskowski; Sarah Kinkel; Gayle M. Davey; William R. Heath; Anne K. Voss; René P. Zahedi; James Pitt; Roman Chrast; Albert Sickmann; Michael T. Ryan; Gordon K. Smyth; David R. Thorburn; Hamish S. Scott
Background: Mitochondrial complex I deficiency is a common inherited metabolic disease. Results: B2 transposable element insertion into Ndufs4 in mice causes loss of the “N assembly module” of complex I, alterations in cellular metabolites, and neurological symptoms. Conclusion: NDUFS4 subunit is required for complex I stability. Significance: Understanding the effects of oxidative phosphorylation defects is essential for the development of treatments. Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4fky, the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4fky/fky mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4fky/fky mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the “N assembly module”, which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD+ ratio that inhibits mitochondrial fatty acid β-oxidation.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Bi Xia Ke; Salvatore Pepe; David R. Grubb; Jasper C. Komen; Adrienne Laskowski; Felicity A. Rodda; Belinda M. Hardman; James Pitt; Michael T. Ryan; Michael Lazarou; Jane Koleff; Michael M.H. Cheung; Joseph J. Smolich; David R. Thorburn
Mitochondrial complex I (CI) deficiency is the most common mitochondrial enzyme defect in humans. Treatment of mitochondrial disorders is currently inadequate, emphasizing the need for experimental models. In humans, mutations in the NDUFS6 gene, encoding a CI subunit, cause severe CI deficiency and neonatal death. In this study, we generated a CI-deficient mouse model by knockdown of the Ndufs6 gene using a gene-trap embryonic stem cell line. Ndufs6gt/gt mice have essentially complete knockout of the Ndufs6 subunit in heart, resulting in marked CI deficiency. Small amounts of wild-type Ndufs6 mRNA are present in other tissues, apparently due to tissue-specific mRNA splicing, resulting in milder CI defects. Ndufs6gt/gt mice are born healthy, attain normal weight and maturity, and are fertile. However, after 4 mo in males and 8 mo in females, Ndufs6gt/gt mice are at increased risk of cardiac failure and death. Before overt heart failure, Ndufs6gt/gt hearts show decreased ATP synthesis, accumulation of hydroxyacylcarnitine, but not reactive oxygen species (ROS). Ndufs6gt/gt mice develop biventricular enlargement by 1 mo, most pronounced in males, with scattered fibrosis and abnormal mitochondrial but normal myofibrillar ultrastructure. Ndufs6gt/gt isolated working heart preparations show markedly reduced left ventricular systolic function, cardiac output, and functional work capacity. This reduced energetic and functional capacity is consistent with a known susceptibility of individuals with mitochondrial cardiomyopathy to metabolic crises precipitated by stresses. This model of CI deficiency will facilitate studies of pathogenesis, modifier genes, and testing of therapeutic approaches.
Antioxidants & Redox Signaling | 2013
Josephine M. Forbes; Bi-Xia Ke; Tuong-Vi Nguyen; Darren C. Henstridge; Sally A. Penfold; Adrienne Laskowski; Karly C. Sourris; Lukas N. Groschner; Mark E. Cooper; David R. Thorburn; Melinda T. Coughlan
AIMS Defects in the activity of enzyme complexes of the mitochondrial respiratory chain are thought to be responsible for several disorders, including renal impairment. Gene mutations that result in complex I deficiency are the most common oxidative phosphorylation disorders in humans. To determine whether an abnormality in mitochondrial complex I per se is associated with development of renal disease, mice with a knockdown of the complex I gene, Ndufs6 were studied. RESULTS Ndufs6 mice had a partial renal cortical complex I deficiency; Ndufs6gt/gt, 32% activity and Ndufs6gt/+, 83% activity compared with wild-type mice. Both Ndufs6gt/+ and Ndufs6gt/gt mice exhibited hallmarks of renal disease, including albuminuria, urinary excretion of kidney injury molecule-1 (Kim-1), renal fibrosis, and changes in glomerular volume, with decreased capacity to generate mitochondrial ATP and superoxide from substrates oxidized via complex I. However, more advanced renal defects in Ndufs6gt/gt mice were observed in the context of a disruption in the inner mitochondrial electrochemical potential, 3-nitrotyrosine-modified mitochondrial proteins, increased urinary excretion of 15-isoprostane F2t, and up-regulation of antioxidant defence. Juvenile Ndufs6gt/gt mice also exhibited signs of early renal impairment with increased urinary Kim-1 excretion and elevated circulating cystatin C. INNOVATION We have identified renal impairment in a mouse model of partial complex I deficiency, suggesting that even modest deficits in mitochondrial respiratory chain function may act as risk factors for chronic kidney disease. CONCLUSION These studies identify for the first time that complex I deficiency as the result of interruption of Ndufs6 is an independent cause of renal impairment.
Diabetes | 2016
Melinda T. Coughlan; Gavin Clive Higgins; Tuong Vi Nguyen; Sally A. Penfold; Vicki Thallas-Bonke; Sih Min Tan; Georg Ramm; Nicole J. Van Bergen; Darren C. Henstridge; Karly C. Sourris; Brooke E. Harcourt; Ian A. Trounce; Portia M Robb; Adrienne Laskowski; Sean L. McGee; Amanda J Genders; Ken Walder; Brian G. Drew; Paul Gregorevic; Hongwei Qian; Merlin C. Thomas; George Jerums; Richard J. MacIsaac; Alison Skene; David Anthony Power; Elif I. Ekinci; Xiaonan W. Wijeyeratne; Linda A. Gallo; Michal Herman-Edelstein; Michael T. Ryan
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD). Here, we report that partial knockdown of Aif in mice recapitulates many features of CKD, in association with a compensatory increase in the mitochondrial ATP pool via a shift toward mitochondrial fusion, excess mitochondrial reactive oxygen species production, and Nox4 upregulation. However, despite a 50% lower AIF protein content in the kidney cortex, there was no loss of complex I activity or assembly. When diabetes was superimposed onto Aif knockdown, there were extensive changes in mitochondrial function and networking, which augmented the renal lesion. Studies in patients with diabetic nephropathy showed a decrease in AIF within the renal tubular compartment and lower AIFM1 renal cortical gene expression, which correlated with declining glomerular filtration rate. Lentiviral overexpression of Aif1m rescued glucose-induced disruption of mitochondrial respiration in human primary proximal tubule cells. These studies demonstrate that AIF deficiency is a risk factor for the development of diabetic kidney disease.
Bioscience Reports | 2014
Matthew J. Bird; Xiaonan W. Wijeyeratne; Jasper C. Komen; Adrienne Laskowski; Michael T. Ryan; David R. Thorburn; Ann E. Frazier
Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells.
Helicobacter | 2017
Garrett Z. Ng; Bi-Xia Ke; Adrienne Laskowski; David R. Thorburn; Philip Sutton
Complex I is the first enzyme complex in the mitochondrial respiratory chain, responsible for generating a large fraction of energy during oxidative phosphorylation. Recently, it has been identified that complex I deficiency can result in increased inflammation due to the generation of reactive oxygen species by innate immune cells. As a reduction in complex I activity has been demonstrated in human stomachs with atrophic gastritis, we investigated whether complex I deficiency could influence Helicobacter pylori pathogenesis.
Human Reproduction | 2006
Alistair T. Pagnamenta; Jan-Willem Taanman; Callum Wilson; Neil E. Anderson; Rosetta Marotta; Andrew J. Duncan; Maria Bitner Glindzicz; Robert W. Taylor; Adrienne Laskowski; David R. Thorburn; Shamima Rahman