Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrienne M. Wang is active.

Publication


Featured researches published by Adrienne M. Wang.


Genome Biology | 2002

Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome

Casey M. Bergman; Barret D. Pfeiffer; Diego E. Rincon-Limas; Roger A. Hoskins; Andreas Gnirke; Chris Mungall; Adrienne M. Wang; Brent Kronmiller; Joanne Pacleb; Soo Park; Mark Stapleton; Kenneth H. Wan; Reed A. George; Pieter J. de Jong; Juan Botas; Gerald M. Rubin; Susan E. Celniker

BackgroundIt is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined.ResultsWe analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences.ConclusionsOur results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone.


Nature Chemical Biology | 2013

Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation

Adrienne M. Wang; Yoshinari Miyata; Susan Klinedinst; Hwei Ming Peng; Jason P. Chua; Tomoko Komiyama; Xiaokai Li; Yoshihiro Morishima; Diane E. Merry; William B. Pratt; Yoichi Osawa; Catherine A. Collins; Jason E. Gestwicki; Andrew P. Lieberman

We sought novel strategies to reduce levels of the polyglutamine androgen receptor (polyQ AR) and achieve therapeutic benefits in models of spinobulbar muscular atrophy (SBMA), a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the Hsp90/Hsp70-based chaperone machinery, but mechanisms regulating the protein’s turnover are incompletely understood. We demonstrate that overexpression of Hip, a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule that acts similarly to Hip by allosterically promoting Hsp70 binding to unfolded substrates. Like Hip, this synthetic co-chaperone enhances client protein ubiquitination and polyQ AR degradation. Both genetic and pharmacologic approaches targeting Hsp70 alleviate toxicity in a Drosophila model of SBMA. These findings highlight the therapeutic potential of allosteric regulators of Hsp70, and provide new insights into the role of the chaperone machinery in protein quality control.


Human Molecular Genetics | 2008

CHIP deletion reveals functional redundancy of E3 ligases in promoting degradation of both signaling proteins and expanded glutamine proteins

Yoshihiro Morishima; Adrienne M. Wang; Zhigang Yu; William B. Pratt; Yoichi Osawa; Andrew P. Lieberman

CHIP (carboxy terminus of Hsc70-interacting protein) an E3 ubiquitin ligase that binds to Hsp70 and Hsp90, promotes degradation of several Hsp90-regulated signaling proteins and disease-causing proteins containing expanded glutamine tracts. In polyglutamine disease models, CHIP has been considered a primary protection factor by promoting degradation of these misfolded proteins. Here, we show that two CHIP substrates, the glucocorticoid receptor (GR), a classic Hsp90-regulated signaling protein, and the expanded glutamine androgen receptor (AR112Q), are degraded at the same rate in CHIP(-/-) and CHIP(+/+) mouse embryonic fibroblasts after treatment with the Hsp90 inhibitor geldanamycin. CHIP(-/-) cytosol has the same ability as CHIP(+/+) cytosol to ubiquitinate purified neuronal nitric oxide synthase (nNOS), another established CHIP substrate. To determine whether other E3 ubiquitin ligases that bind to Hsp70 (Parkin) or Hsp90 (Mdm2) act on CHIP substrates, each E3 ligase was co-expressed with the GR, nNOS, AR112Q or Q78 ataxin-3. CHIP lowered the levels of all four proteins, Parkin acted on nNOS and Q78 ataxin-3 but not on the steroid receptors, and Mdm2 did not affect any of the co-expressed proteins. Moreover, both CHIP and Parkin co-localized to aggregates of the expanded glutamine AR formed in cell culture and in a knock-in mouse model of spinal and bulbar muscular atrophy. These observations establish that CHIP does not play an exclusive role in regulating the turnover of Hsp90 client signaling proteins or expanded glutamine tract proteins, and show that the Hsp70-dependent E3 ligase Parkin acts redundantly to CHIP on some substrates.


Journal of Biological Chemistry | 2010

Inhibition of Hsp70 by Methylene Blue Affects Signaling Protein Function and Ubiquitination and Modulates Polyglutamine Protein Degradation

Adrienne M. Wang; Yoshihiro Morishima; Kelly M. Clapp; Hwei Ming Peng; William B. Pratt; Jason E. Gestwicki; Yoichi Osawa; Andrew P. Lieberman

The Hsp90/Hsp70-based chaperone machinery regulates the activity and degradation of many signaling proteins. Cycling with Hsp90 stabilizes client proteins, whereas Hsp70 interacts with chaperone-dependent E3 ubiquitin ligases to promote protein degradation. To probe these actions, small molecule inhibitors of Hsp70 would be extremely useful; however, few have been identified. Here we test the effects of methylene blue, a recently described inhibitor of Hsp70 ATPase activity, in three well established systems of increasing complexity. First, we demonstrate that methylene blue inhibits the ability of the purified Hsp90/Hsp70-based chaperone machinery to enable ligand binding by the glucocorticoid receptor and show that this effect is due to specific inhibition of Hsp70. Next, we establish that ubiquitination of neuronal nitric-oxide synthase by the native ubiquitinating system of reticulocyte lysate is dependent upon both Hsp70 and the E3 ubiquitin ligase CHIP and is blocked by methylene blue. Finally, we demonstrate that methylene blue impairs degradation of the polyglutamine expanded androgen receptor, an Hsp90 client mutated in spinal and bulbar muscular atrophy. In contrast, degradation of an amino-terminal fragment of the receptor, which lacks the ligand binding domain and, therefore, is not a client of the Hsp90/Hsp70-based chaperone machinery, is enhanced through homeostatic induction of autophagy that occurs when Hsp70-dependent proteasomal degradation is inhibited by methylene blue. Our data demonstrate the utility of methylene blue in defining Hsp70-dependent functions and reveal divergent effects on polyglutamine protein degradation depending on whether the substrate is an Hsp90 client.


PLOS Genetics | 2011

Macroautophagy Is Regulated by the UPR-Mediator CHOP and Accentuates the Phenotype of SBMA Mice

Zhigang Yu; Adrienne M. Wang; Hiroaki Adachi; Masahisa Katsuno; Gen Sobue; Zhenyu Yue; Diane M. Robins; Andrew P. Lieberman

Altered protein homeostasis underlies degenerative diseases triggered by misfolded proteins, including spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder caused by a CAG/glutamine expansion in the androgen receptor. Here we show that the unfolded protein response (UPR), an ER protein quality control pathway, is induced in skeletal muscle from SBMA patients, AR113Q knock-in male mice, and surgically denervated wild-type mice. To probe the consequence of UPR induction, we deleted CHOP (C/EBP homologous protein), a transcription factor induced following ER stress. CHOP deficiency accentuated atrophy in both AR113Q and surgically denervated muscle through activation of macroautophagy, a lysosomal protein quality control pathway. Conversely, impaired autophagy due to Beclin-1 haploinsufficiency decreased muscle wasting and extended lifespan of AR113Q males, producing a significant and unexpected amelioration of the disease phenotype. Our findings highlight critical cross-talk between the UPR and macroautophagy, and they indicate that autophagy activation accentuates aspects of the SBMA phenotype.


Cell Cycle | 2012

pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast

Christopher J. Murakami; Joe R. Delaney; Annie Chou; Daniel B. Carr; Jennifer Schleit; George L. Sutphin; Elroy H. An; Anthony Castanza; Marissa Fletcher; Sarani Goswami; Sean Higgins; Mollie Holmberg; Jessica Hui; Monika Jelic; Ki-Soo Jeong; Jin R. Kim; Shannon Klum; Eric Liao; Michael S. Lin; Winston Lo; Hillary Miller; Zhao J. Peng; Tom Pollard; Prarthana Pradeep; Dillon Pruett; Dilreet Rai; Vanessa Ros; Alex Schuster; Minnie Singh; Benjamin L. Spector

Chronological and replicative aging have been studied in yeast as alternative paradigms for post-mitotic and mitotic aging, respectively. It has been known for more than a decade that cells of the S288C background aged chronologically in rich medium have reduced replicative lifespan relative to chronologically young cells. Here we report replication of this observation in the diploid BY4743 strain background. We further show that the reduction in replicative lifespan from chronological aging is accelerated when cells are chronologically aged under standard conditions in synthetic complete medium rather than rich medium. The loss of replicative potential with chronological age is attenuated by buffering the pH of the chronological aging medium to 6.0, an intervention that we have previously shown can extend chronological lifespan. These data demonstrate that extracellular acidification of the culture medium can cause intracellular damage in the chronologically aging population that is asymmetrically segregated by the mother cell to limit subsequent replicative lifespan.


Experimental Gerontology | 2013

Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae.

Joe R. Delaney; Christopher J. Murakami; Annie Chou; Daniel B. Carr; Jennifer Schleit; George L. Sutphin; Elroy H. An; Anthony Castanza; Marissa Fletcher; Sarani Goswami; Sean Higgins; Mollie Holmberg; Jessica Hui; Monika Jelic; Ki Soo Jeong; Jin R. Kim; Shannon Klum; Eric Liao; Michael S. Lin; Winston Lo; Hillary Miller; Zhao J. Peng; Tom Pollard; Prarthana Pradeep; Dillon Pruett; Dilreet Rai; Vanessa Ros; Alex Schuster; Minnie Singh; Benjamin L. Spector

Chronological aging of budding yeast cells results in a reduction in subsequent replicative life span through unknown mechanisms. Here we show that dietary restriction during chronological aging delays the reduction in subsequent replicative life span up to at least 23days of chronological age. We further show that among the viable portion of the control population aged 26days, individual cells with the lowest mitochondrial membrane potential have the longest subsequent replicative lifespan. These observations demonstrate that dietary restriction modulates a common molecular mechanism linking chronological and replicative aging in yeast and indicate a critical role for mitochondrial function in this process.


Disease Models & Mechanisms | 2009

Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice.

Zhigang Yu; Adrienne M. Wang; Diane M. Robins; Andrew P. Lieberman

SUMMARY Here, we used a mouse model of Kennedy disease, a degenerative disorder caused by an expanded CAG repeat in the androgen receptor (AR) gene, to explore pathways leading to cellular dysfunction. We demonstrate that male mice containing a targeted Ar allele with 113 CAG repeats (AR113Q mice) exhibit hormone- and glutamine length-dependent missplicing of Clcn1 RNA in skeletal muscle. Changes in RNA splicing are associated with increased expression of the RNA-binding protein CUGBP1. Furthermore, we show that skeletal muscle denervation in the absence of a repeat expansion leads to increased CUGBP1 expression. However, this induction of CUGBP1 is not sufficient to alter Clcn1 RNA splicing, indicating that changes mediated by both denervation and AR113Q toxicity contribute to altered RNA processing. To test this notion directly, we exogenously expressed the AR in vitro and observed hormone-dependent changes in the splicing of pre-mRNAs from a human cardiac troponin T minigene. These effects were notably similar to changes mediated by RNA with expanded CUG tracts, but not CAG tracts, highlighting unanticipated similarities between CAG and CUG repeat diseases. The expanded glutamine AR also altered hormone-dependent splicing of a calcitonin/calcitonin gene-related peptide minigene, suggesting that toxicity of the mutant protein additionally affects RNA processing pathways that are distinct from those regulated by CUGBP1. Our studies demonstrate the occurrence of hormone-dependent alterations in RNA splicing in Kennedy disease models, and they indicate that these changes are mediated by both the cell-autonomous effects of the expanded glutamine AR protein and by alterations in skeletal muscle that are secondary to denervation.


Cold Spring Harbor Perspectives in Medicine | 2015

Biochemical Genetic Pathways that Modulate Aging in Multiple Species

Alessandro Bitto; Adrienne M. Wang; Christopher F. Bennett; Matt Kaeberlein

The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future.


Disease Models & Mechanisms | 2014

A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer

Jonathon L. Burman; Leslie S. Itsara; Ernst Bernhard Kayser; Wichit Suthammarak; Adrienne M. Wang; Matt Kaeberlein; Margaret M. Sedensky; Philip G. Morgan; Leo J. Pallanck

Mutations affecting mitochondrial complex I, a multi-subunit assembly that couples electron transfer to proton pumping, are the most frequent cause of heritable mitochondrial diseases. However, the mechanisms by which complex I dysfunction results in disease remain unclear. Here, we describe a Drosophila model of complex I deficiency caused by a homoplasmic mutation in the mitochondrial-DNA-encoded NADH dehydrogenase subunit 2 (ND2) gene. We show that ND2 mutants exhibit phenotypes that resemble symptoms of mitochondrial disease, including shortened lifespan, progressive neurodegeneration, diminished neural mitochondrial membrane potential and lower levels of neural ATP. Our biochemical studies of ND2 mutants reveal that complex I is unable to efficiently couple electron transfer to proton pumping. Thus, our study provides evidence that the ND2 subunit participates directly in the proton pumping mechanism of complex I. Together, our findings support the model that diminished respiratory chain activity, and consequent energy deficiency, are responsible for the pathogenesis of complex-I-associated neurodegeneration.

Collaboration


Dive into the Adrienne M. Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elroy H. An

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe R. Delaney

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge