Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrienne S. Brown is active.

Publication


Featured researches published by Adrienne S. Brown.


Organic Letters | 2013

Turn-On, Fluorescent Nuclear Stains with Live Cell Compatibility

Demar R. G. Pitter; Jens Wigenius; Adrienne S. Brown; James D. Baker; Fredrik Westerlund; James N. Wilson

DNA-binding, green and yellow fluorescent probes with excellent brightness and high on/off ratios are reported. The probes are membrane permeable, live-cell compatible, and optimally matched to 405 nm and 514 nm laser lines, making them attractive alternatives to UV-excited and blue emissive Hoechst 33342 and DAPI nuclear stains. Their electronic structure was investigated by optical spectroscopy supported by TD-DFT calculations. DNA binding is accompanied by 27- to 75-fold emission enhancements, and linear dichroism demonstrates that one dye is a groove binder while the other intercalates into DNA.


Langmuir | 2011

Luminescent charge-transfer complexes: tuning emission in binary fluorophore mixtures.

Maneesh D. Gujrati; N. S. Saleesh Kumar; Adrienne S. Brown; Burjor Captain; James N. Wilson

Charge-transfer (CT) complexes composed of a π-electron-poor naphthalene diimide (NDI) derivative combined with a series of π-electron-rich donors were investigated. Solutions of the CT complexes are nonemissive; however, solid-state complexes and aqueous suspensions display emission that is dependent on the energy of the HOMO of the electron donor. Crystallographic analysis of a pyrene-NDI complex reveals columnar packing and a high degree of frontier molecular orbital (FMO) overlap that likely contributes to the observed optical properties. The fluorescent CT particles are utilized as imaging agents; additional luminescent CT complexes may be realized by considering FMO energies and topologies.


Organic and Biomolecular Chemistry | 2011

Fluorescent neuroactive probes based on stilbazolium dyes

Adrienne S. Brown; Lisa Marie Bernal; Teresa L. Micotto; Erika L. Smith; James N. Wilson

A set of spectrally diverse stilbazolium dyes was identified in an uptake assay using cultured brainstem and cerebellum cells isolated from e19 chicks. Pretreatment of cells with indatraline, a monoamine reuptake inhibitor, allowed identification of dyes that may interact with monoamine transporters. Two structurally related, yet spectrally segregated, probes, (E)-1-methyl-4-[2-(2-naphthalenyl)ethenyl]-pyridinium iodide (NEP+, 3A) and (E)-4-[2-(6-hydroxy-2-naphthalenyl)ethenyl]-1-methyl-pyridinium iodide (HNEP+, 4A), were selected and further investigated using HEK-293 cells selectively expressing dopamine, norepinephrine or serotonin transporters. HNEP+ was selectively accumulated via catecholamine transporters, with the norepinephrine transporter (NET) giving the highest response; NEP+ was not transported, though possible binding was observed. The alternate modes of interaction enable the use of NEP+ and HNEP+ to image distinct cell populations in live brain tissue explants. The preference for HNEP+ accumulation via NET was confirmed by imaging uptake in the absence and presence of desipramine, a norepinephrine reuptake inhibitor.


Chemical Communications | 2009

Fluorescent mimics of 5-hydroxytryptamine based on N-alkylated derivatives of 6-hydroxycarbostyril

Teresa L. Micotto; Adrienne S. Brown; James N. Wilson

Fluorescent probes based on a 6-hydroxycarbostyril core accumulate inside neurons and astroglia in the absence of a serotonin uptake inhibitor.


Organic and Biomolecular Chemistry | 2012

Probing the functional limits of the norepinephrine transporter with self-reporting, fluorescent stilbazolium dimers

Erika L. Smith; Adrienne S. Brown; Edward Adjaye-Mensah; James N. Wilson

A series of stilbazolium dimers were synthesized and investigated as sterically demanding ligands targeting the norepinephrine transporter (NET). The environmentally sensitive fluorescence of the dyes enables their use as self-reporting ligands; binding to and displacement from NET can be monitored by fluorescence microscopy.


ACS Sensors | 2017

Highlighting Cancer Cells with Halochromic Switches

Sicheng Tang; Yang Zhang; Ek Raj Thapaliya; Adrienne S. Brown; James N. Wilson; Françisco M. Raymo

Halochromic coumarin-oxazine prefluorophores and targeting folate ligands can be connected covalently to the side chains of amphiphilic polymers. The resulting macromolecular constructs assemble into nanoparticles in aqueous environments. The prefluorophores do not produce any detectable fluorescence at neutral pH, but are converted into fluorophores with intense visible emission at acidic pH. Protonation opens the oxazine heterocycle to shift bathochromically the coumarin absorption and activate fluorescence with a brightness per nanoparticle approaching 5 × 105 M-1 cm-1. This value translates into a 170-fold enhancement relative to the isolated fluorophores dissolved in organic solvent. The folate ligands direct these multicomponent constructs into acidic intracellular compartments of folate-positive cells, where the prefluorophores switch to the corresponding fluorophores and produce fluorescence. The pH-induced activation of the signaling units ensures negligible background fluorescence from the extracellular matrix, which instead limits considerably the contrast accessible with model systems incorporating conventional nonactivatable fluorophores. Furthermore, no intracellular fluorescence can be detected when the very same measurements are performed with folate-negative cells. Nonetheless, control experiments demonstrate that the covalent connection of the prefluorophores to the polymer backbone of the amphiphilic constructs is essential to ensure selectivity. Model systems with prefluorophores noncovalently encapsulated cannot discriminate folate-positive from -negative cells. Thus, our structural design for the covalent integration of activatable signaling units and targeting ligands within the same nanostructured assembly together with the photophysical properties engineered into the emissive components offer the opportunity to highlight cancer cells selectively with high brightness and optimal contrast.


Bioconjugate Chemistry | 2017

Bioimaging with Macromolecular Probes Incorporating Multiple BODIPY Fluorophores

Ek Raj Thapaliya; Yang Zhang; Pravat Dhakal; Adrienne S. Brown; James N. Wilson; Kevin M. Collins; Françisco M. Raymo

Seven macromolecular constructs incorporating multiple borondipyrromethene (BODIPY) fluorophores along a common poly(methacrylate) backbone with decyl and oligo(ethylene glycol) side chains were synthesized. The hydrophilic oligo(ethylene glycol) components impose solubility in aqueous environment on the overall assembly. The hydrophobic decyl chains effectively insulate the fluorophores from each other to prevent detrimental interchromophoric interactions and preserve their photophysical properties. As a result, the brightness of these multicomponent assemblies is approximately three times greater than that of a model BODIPY monomer. Such a high brightness level is maintained even after injection of the macromolecular probes in living nematodes, allowing their visualization with a significant improvement in signal-to-noise ratio, relative to the model monomer, and no cytotoxic or behavioral effects. The covalent scaffold of these macromolecular constructs also permits their subsequent conjugation to secondary antibodies. The covalent attachment of polymer and biomolecule does not hinder the targeting ability of the latter and the resulting bioconjugates can be exploited to stain the tubulin structure of model cells to enable their visualization with optimal signal-to-noise ratios. These results demonstrate that this particular structural design for the incorporation of multiple chromophores within the same covalent construct is a viable one to preserve the photophysical properties of the emissive species and enable the assembly of bioimaging probes with enhanced brightness.


Bioorganic & Medicinal Chemistry Letters | 2011

Fluorescent reporters of monoamine transporter distribution and function

Sharanappa M. Bagale; Adrienne S. Brown; Melissa M. Carballosa Gonzalez; Alberto Vitores; Teresa L. Micotto; N. S. Saleesh Kumar; Ian D. Hentall; James N. Wilson

Serotonin is a monoamine serving as a chemical messenger in diverse brain regions, as well as in blood and various other organs. We synthesized six ethylamine functionalized fluorophores as fluorescent probes for serotonin. The one with best spectral properties and aqueous solubility, 6-amino-2-(2-aminoethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione, was studied in detail both in vivo and in vitro. It was shown to act as a ligand for serotonin transporter (SERT) without acute cerebral or cardiovascular toxicity or adverse effects. Fluorescent serotonin analogs can be used for direct visualization of SERT distribution and activity in live tissue.


Colloidal Nanoparticles for Biomedical Applications XIII 2018 | 2018

Bright and compact macromolecular probes for bioimaging applications

Ek Raj Thapaliya; Yang Zhang; Pravat Dhakal; Adrienne S. Brown; James N. Wilson; Kevin M. Collins; Françisco M. Raymo

Amphiphilic macromolecules with multiple borondipyrromethene (BODIPY) chromophores appended to a common poly(methacrylate) backbone were synthesized by the random co-polymerization of appropriate methacrylate monomers. The resulting polymers incorporate also hydrophilic oligo(ethylene glycol) and hydrophobic decyl side chains designed to impose aqueous solubility and insulate the chromophoric components from each other respectively. The presence of multiple chromophores translates into a significant enhancement in molar absorption coefficient, relative to a model BODIPY monomer. The effective insulation of the fluorophores minimizes interchromophoric interactions and mitigates depressive effects on the fluorescence quantum yield. The overall result is a 6-fold enhancement in brightness, relative to the model monomer. These macromolecular probes can be injected into live Caenorhabditis elegans to allow their visualization with a 4-fold increase in signal intensity, relative to the model system. Furthermore, they can be conjugated to secondary antibodies, under standard amide-coupling conditions, with negligible influence on the binding affinity of the biomoleucles to allow the implementation of immunolabeling protocols.


Proceedings of SPIE | 2017

Highlighting cancer cells with macromolecular probes

Sicheng Tang; Yang Zhang; Ek Raj Thapaliya; Adrienne S. Brown; James N. Wilson; Françisco M. Raymo

Conventional fluorophore–ligand constructs for the detection of cancer cells generally produce relatively weak signals with modest contrast. The inherently low brightness accessible per biding event with the pairing of a single organic fluorophore to a single ligand as well as the contribution of unbound probes to background fluorescence are mainly responsible for these limitations. Our laboratories identified a viable structural design to improve both brightness and contrast. It is based on the integration of activatable fluorophores and targeting ligands within the same macromolecular construct. The chromophoric components are engineered to emit bright fluorescence exclusively in acidic environments. The targeting agents are designed to bind complementary receptors overexpressed on the surface of cancer cells and allow internalization of the macromolecules into acidic organelles. As a result of these properties, our macromolecular probes switch their intense emission on exclusively in the intracellular space of target cells with minimal background fluorescence from the extracellular matrix. In fact, these operating principles translate into a 170-fold enhancement in brightness, relative to equivalent but isolated chromophoric components, and a 3-fold increase in contrast, relative to model but non-activatable fluorophores. Thus, our macromolecular probes might ultimately evolve into valuable analytical tools to highlight cancer cells with optimal signal-to-noise ratios in a diversity of biomedical applications.

Collaboration


Dive into the Adrienne S. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge