Adronie Verbrugghe
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adronie Verbrugghe.
British Journal of Nutrition | 2009
Guido Bosch; Adronie Verbrugghe; Myriam Hesta; Jens J. Holst; Antonius F. B. van der Poel; Geert Janssens; W.H. Hendriks
Depending on type and inclusion level, dietary fibre may increase and maintain satiety and postpone the onset of hunger. This 7-week study evaluated the effect of fibre fermentability on physiological satiety-related metabolites and voluntary food intake (VFI) in dogs. Sixteen healthy adult dogs were fed a low-fermentable fibre (LFF) diet containing 8.5 % cellulose or a high-fermentable fibre (HFF) diet containing 8.5 % sugarbeet pulp and 2 % inulin. Large intestinal fibre degradation was evaluated by apparent faecal digestibility of nutrients and faecal SCFA and NH3 concentrations. Postprandial blood samples were obtained to determine postprandial plasma glucose, insulin, total peptide tyrosine-tyrosine (PYY), total glucagon-like peptide-1 (GLP-1) and total ghrelin concentrations. At the end of the study, the dogs were given a single meal of a dry dog food to determine VFI. Dogs fed the HFF diet had a significantly higher large intestinal fibre degradation and production of SCFA compared with the dogs fed the LFF diet. The HFF-fed dogs tended (P = 0.058) to show a lower VFI at the end of the study. No treatment effects were found for postprandial plasma glucose, PYY, GLP-1 and ghrelin responses. The concentrations of these metabolites could not be related to the observed difference in VFI. The inclusion of fermentable fibre in canine diets may contribute to the prevention or mitigation of obesity through its effects on satiety. The underlying mechanisms require further investigation.
Journal of Animal Physiology and Animal Nutrition | 2013
Sarah Depauw; Myriam Hesta; Katherine Whitehouse-Tedd; Lynn Vanhaecke; Adronie Verbrugghe; Geert Janssens
As wild felids are obligate carnivores, it is likely that poorly enzymatically digestible animal tissues determine hindgut fermentation, instead of plant fibre. Therefore, faecal concentrations of short-chain fatty acids (SCFA, including branched-chain fatty acids, BCFA), indole and phenol were evaluated in 14 captive cheetahs, fed two different diets differing in proportion of poorly enzymatically digestible animal tissue. Using a cross-over design, the cheetahs were fed exclusively whole rabbit or supplemented beef for 1 month each. Feeding whole rabbit decreased faecal propionic (p < 0.001) and butyric (p = 0.013) acid concentrations, yet total SCFA was unaltered (p = 0.146). Also, a remarkably higher acetic acid to propionic acid ratio (p = 0.013) was present when fed whole rabbit. Total BCFA (p = 0.011) and putrefactive indole (p = 0.004) and phenol (p = 0.002) were lower when fed whole rabbit. Additionally, serum indoxyl sulphate, a toxic metabolite of indole, was analysed and showed a quadratic decrease (p = 0.050) when fed whole rabbit. The divergent SCFA ratios and the decrease in putrefaction when fed whole rabbit could be caused by the presence of undigested tissue, such as skin, bone and cartilage, that might have fibre-like functions. The concept of animal fibre is an unexplored area of interest relevant to gastrointestinal health of captive cheetahs and likely other felids.
British Journal of Nutrition | 2009
Adronie Verbrugghe; Myriam Hesta; Kris Gommeren; Sylvie Daminet; Birgitte Wuyts; Johan Buyse; Geert Janssens
The effect of dietary oligofructose and inulin supplementation on glucose metabolism in obese and non-obese cats was assessed. Two diets were tested in a crossover design; a control diet high in protein (46 % on DM basis), moderate in fat (15 %), low in carbohydrates (27 %), but no soluble fibres added; and a prebiotic diet, with 2.5 % of a mixture of oligofructose and inulin added to the control diet. Eight non-obese and eight obese cats were allotted to each of two diets in random order at intervals of 4 weeks. At the end of each testing period, intravenous glucose tolerance tests were performed. Area under the glucose curve (AUCgluc) was increased (P = 0.022) and the second insulin peak was delayed (P = 0.009) in obese compared to non-obese cats. Diets did not affect fasting plasma glucose concentrations, blood glucose response at each glucose time-point after glucose administration, AUCgluc, fasting serum insulin concentrations, area under the insulin curve, and height and appearance time of insulin response. Yet, analysis of acylcarnitines revealed higher propionylcarnitine concentrations (P = 0.03) when fed the prebiotic diet, suggesting colonic fermentation and propionate absorption. Prebiotic supplementation reduced methylmalonylcarnitine (P = 0.072) and aspartate aminotransferase concentrations (P = 0.025), both indicating reduced gluconeogenesis from amino acids. This trial evidenced impaired glucose tolerance and altered insulin response to glucose administration in obese compared to non-obese cats, regardless of dietary intervention; yet modulation of glucose metabolism by enhancing gluconeogenesis from propionate and inhibition of amino acid catabolism can be suggested.
Critical Reviews in Food Science and Nutrition | 2012
Adronie Verbrugghe; Myriam Hesta; Sylvie Daminet; Geert Janssens
Cats are strict carnivores that rely on nutrients in animal tissues to meet their specific and unique nutritional requirements. In their natural habitat, cats consume prey high in protein with moderate amounts of fat and minimal carbohydrates in contrast to commercial diets, which are sometimes moderate to high in carbohydrates. This change in diet has been accompanied by a shift from an outdoor environment to an indoor lifestyle and decreased physical activity, because cats no longer need to hunt to obtain food. This transformation of the lifestyle of cats is thought to be responsible for the recent increase in incidence of obesity, insulin resistance, and diabetes mellitus in domestic cats. At first, an overview of the evolutionary physiological adaptations of carbohydrate digestion in the feline digestive tract and of the hepatic carbohydrate and protein metabolism reflecting the true carnivorous nature of cats is given. Secondly, this literature review deals with nutritional modulation of insulin sensitivity, focusing on dietary macronutrients, carbohydrate sources, and dietary fiber for prevention and treatment of insulin resistance.
British Journal of Nutrition | 2013
H. Van de Velde; Geert Janssens; H. de Rooster; Ingeborgh Polis; Iain R. Peters; Richard Ducatelle; Patrick Nguyen; Johan Buyse; Kristel Rochus; Jia Xu; Adronie Verbrugghe; Myriam Hesta
According to human research, the location of fat accumulation seems to play an important role in the induction of obesity-related inflammatory complications. To evaluate whether an inflammatory response to obesity depends on adipose tissue location, adipokine gene expression, presence of immune cells and adipocyte cell size of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were compared between lean and obese cats. Additionally, the present study proposes the cat as a model for human obesity and highlights the importance of animal models for human research. A total of ten chronically obese and ten lean control cats were included in the present study. Body weight, body condition score and body composition were determined. T-lymphocyte, B-lymphocyte, macrophage concentrations and adipocyte cell size were measured in adipose tissue at different locations. Serum leptin concentration and the mRNA expression of leptin and adiponectin, monocyte chemoattractant protein-1, chemoligand-5, IL-8, TNF-alpha, interferon-gamma, IL-6 and IL-10 were measured in blood and adipose tissues (abdominal and inguinal SAT, and omental, bladder and renal VAT). Feline obesity was characterised by increased adipocyte cell size and altered adipokine gene expression, in favour of pro-inflammatory cytokines and chemokines. Consequently, concentration of T-lymphocytes was increased in the adipose tissue of obese cats. Alteration of adipose tissue was location dependent in both lean and obese cats. Moreover, the observed changes were more prominent in SAT compared with VAT.
Journal of Animal Physiology and Animal Nutrition | 2012
Adronie Verbrugghe; Myriam Hesta; Sylvie Daminet; Ingeborgh Polis; Jens J. Holst; Johan Buyse; Brigitte Wuyts; Geert Janssens
In six normal-weight and six obese cats, the metabolic effect of propionate absorbed from the colon was assessed. Two colonic infusions were tested in a crossover design with intervals of 4 weeks. The test solution contained 4 mmol sodium propionate per kg ideal body weight in a 0.2% NaCl solution. Normal saline was given as control solution. Solutions were infused into the hindgut over 30 min. Blood samples were obtained prior to and at various time points after starting the infusion. As body condition did not affect evaluated parameters, all data were pooled. Plasma glucose concentrations showed differences neither over time nor during or after infusion with propionate or control. Plasma amino acid concentrations rose over time (p < 0.001), but were similar for both infusions. Plasma propionylcarnitine rose markedly towards the end of the propionate infusion and decreased afterwards (p < 0.001), whereas 3-hydroxy-3-methylglutarylcarnitine was lower 30 (p = 0.005) and 60 min (p = 0.032) after ending propionate infusions and acetylcarnitine tended to fall at the same time points (p = 0.079; p = 0.080), suggesting inhibition of gluconeogenesis from pyruvate and amino acids, but initiation of propionate-induced gluconeogenesis. In conclusion, propionate absorbed from the colon is hypothesized to act as gluconeogenic substrate, regardless of the cats body condition.
British Journal of Nutrition | 2010
Adronie Verbrugghe; Geert Janssens; Eva Meininger; Sylvie Daminet; Koen Piron; Lynn Vanhaecke; Birgitte Wuyts; Johan Buyse; Myriam Hesta
N balance and postprandial acylcarnitine profile following intestinal fermentation of oligofructose and inulin were investigated in healthy cats. Two diets were tested in a crossover design: a commercial high-protein cat food supplemented with 4 % DM oligofructose and inulin (spectrum: degree of polymerisation (DP) 2-10: 60 (SE 5) % DM; DP>10: 28 (SE 5) % DM) as high-fermentable fibre (HFF) diet, and the same commercial diet supplemented with 4 % DM cellulose as low-fermentable fibre diet. Eight adult cats were randomly allotted to each of the two diets at intervals of 4 weeks. At the end of each testing period, faeces and urine were collected over a 5-d period, and blood samples were obtained before and at the selected time points postprandially. No differences were found for N intake, N digestibility and faecal N excretion, whereas urinary N excretion was lower when the HFF diet was fed (P = 0.044). N balance was positive in all the cats, and tended to be increased when the HFF diet was fed (P = 0.079). Propionylcarnitine concentrations (P = 0.015) and their area under the curve (AUC) (P = 0.013) were increased when the HFF diet was fed, revealing a more pronounced production and absorption of propionate. Yet, methylmalonylcarnitine concentrations and concurrent AUC were not elevated when the HFF diet was fed, indicating reduced amino acid catabolism. 3-Hydroxy-3-methylglutarylcarnitine concentrations (P = 0.026) and their AUC (P = 0.028) were also reduced when the HFF diet was fed, implying diminished use of branched-chain amino acids as well. In healthy cats, oligofructose and inulin added to a high-protein diet were suggested to reduce postprandial amino acid-induced gluconeogenesis by substitution with propionate.
British Journal of Nutrition | 2013
Kristel Rochus; Geert Janssens; Hannelore Van de Velde; Adronie Verbrugghe; Birgitte Wuyts; Lynn Vanhaecke; Myriam Hesta
The present study evaluated the potential of affecting amino acid metabolism through intestinal fermentation in domestic cats, using dietary guar gum as a model. Apparent protein digestibility, plasma fermentation metabolites, faecal fermentation end products and fermentation kinetics (exhaled breath hydrogen concentrations) were evaluated. Ten cats were randomly assigned to either guar gum- or cellulose-supplemented diets, that were fed in two periods of 5 weeks in a crossover design. No treatment effect was seen on fermentation kinetics. The apparent protein digestibility (P= 0.07) tended to be lower in guar gum-supplemented cats. As a consequence of impaired small-intestinal protein digestion and amino acid absorption, fermentation of these molecules in the large intestine was stimulated. Amino acid fermentation has been shown to produce high concentrations of acetic and butyric acids. Therefore, no treatment effect on faecal propionic acid or plasma propionylcarnitine was observed in the present study. The ratio of faecal butyric acid:total SCFA tended to be higher in guar gum-supplemented cats (P= 0.05). The majority of large-intestinal butyric acid is absorbed by colonocytes and metabolised to 3-hydroxy-butyrylcoenzyme A, which is then absorbed into the bloodstream. This metabolite was analysed in plasma as 3-hydroxy-butyrylcarnitine, which was higher (P= 0.02) in guar gum-supplemented cats. In all probability, the high viscosity of the guar gum supplement was responsible for the impaired protein digestion and amino acid absorption. Further research is warranted to investigate whether partially hydrolysed guar gum is useful to potentiate the desirable in vivo effects of this fibre supplement.
BMC Veterinary Research | 2016
Jia Xu; Adronie Verbrugghe; Marta Ribeiro Alves Lourenço; Geert Janssens; Daisy Liu; Tom Van de Wiele; Venessa Eeckhaut; Filip Van Immerseel; Isabel Van de Maele; Yufeng Niu; Guido Bosch; Greet Junius; Brigitte Wuyts; Myriam Hesta
BackgroundInflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host metabolic changes in IBD dogs.Twenty-three dogs diagnosed with IBD and ten healthy control dogs were included. Dogs with IBD were given a clinical score using the canine chronic enteropathy clinical activity index (CCECAI). Faecal short-chain fatty acids (SCFA) and ammonia concentrations were measured and quantitative PCR was performed. The concentration of plasma amino acids, acylcarnitines, serum folate, cobalamin, and indoxyl sulfate was determined.ResultsNo significant differences in the abundance of a selection of bacterial groups and fermentation metabolites were observed between the IBD and control groups. However, significant negative correlations were found between CCECAI and the faecal proportion of Lactobacillus as well as between CCECAI and total SCFA concentration. Serum folate and plasma citrulline were decreased and plasma valine was increased in IBD compared to control dogs. Increased plasma free carnitine and total acylcarnitines were observed in IBD compared with control dogs, whereas short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and, methylmalonylcarnitine) to free carnitine ratios decreased. Dogs with IBD had a higher 3-hydroxyisovalerylcarnitine + isovalerylcarnitine to leucine ratio compared to control dogs.ConclusionsCanine IBD induced a wide range of changes in metabolic profile, especially for the plasma concentrations of short-chain acylcarnitines and amino acids, which could have evolved from tissue damage and alteration in host metabolism. In addition, dogs with more severe IBD were characterised by a decrease in faecal proportion of Lactobacillus.
Journal of Small Animal Practice | 2012
Myriam Hesta; Adronie Verbrugghe; Ke Gulbrandsen; Armand Christophe; Jürgen Zentek; Petra Hellweg; Geert Janssens
OBJECTIVES To assess the short-term effects of feeding distinct salmon oil sources in healthy dogs. METHODS A diet containing chicken fat as major fat source was fed to 17 dogs for 14 days. For the next 14 days, dogs received one of two diets, both with 1% of chicken fat exchanged for 1% salmon oil; Norwegian or Scottish salmon oil, harvested using a distinct procedure. Finally, all dogs were fed chicken fat again for 14 days. RESULTS Salmon oil increased serum phospholipid total n-3 polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic acid and decreased total n-6 polyunsaturated fatty acids and n-6:n-3. The phospholipid fatty acid profile returned to initial values within 2 weeks of discontinuing salmon oil administration. Blood coagulation, acute phase response and plasma immunoglobulin concentrations were not affected by salmon oil and no differences were detected for the measured indices between the two salmon oils. CLINICAL SIGNIFICANCE Low-dose salmon oil administration alters serum phospholipid fatty acid profile within 2 weeks, but without affecting selected immunologic and coagulation indices. Salmon oil sources from different sources and harvested using a distinct procedure did not induce different effects, most probably because of their similar fatty acid profiles.