Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Advait Nagle is active.

Publication


Featured researches published by Advait Nagle.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

David Plouffe; Achim Brinker; Case W. McNamara; Kerstin Henson; Nobutaka Kato; Kelli Kuhen; Advait Nagle; Francisco Adrian; Jason Matzen; Paul Anderson; Tae-gyu Nam; Nathanael S. Gray; Arnab K. Chatterjee; Jeff Janes; S. Frank Yan; Richard Trager; Jeremy S. Caldwell; Peter G. Schultz; Yingyao Zhou; Elizabeth A. Winzeler

The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities.


Science | 2011

Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery

Stephan Meister; David Plouffe; Kelli Kuhen; Ghislain M. C. Bonamy; Tao Wu; S. Whitney Barnes; Selina Bopp; Rachel Borboa; A. Taylor Bright; Jianwei Che; Steve Cohen; Neekesh V. Dharia; Kerstin Gagaring; Montip Gettayacamin; Perry Gordon; Todd Groessl; Nobutaka Kato; Marcus C. S. Lee; Case W. McNamara; David A. Fidock; Advait Nagle; Tae-gyu Nam; Wendy Richmond; Jason Roland; Matthias Rottmann; Bin Zhou; Patrick Froissard; Richard Glynne; Dominique Mazier; Jetsumon Sattabongkot

Imidazolopiperazine compounds inhibit liver-stage malaria parasites with one oral dose in mice. Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Nature | 2013

Targeting Plasmodium PI(4)K to eliminate malaria

Case W. McNamara; Marcus C. S. Lee; Chek Shik Lim; Siau Hoi Lim; Jason Roland; Advait Nagle; Oliver Simon; Bryan K. S. Yeung; Arnab K. Chatterjee; Susan McCormack; Micah J. Manary; Anne-Marie Zeeman; Koen J. Dechering; T. R. Santha Kumar; Philipp P. Henrich; Kerstin Gagaring; Maureen Ibanez; Nobutaka Kato; Kelli Kuhen; Christoph Fischli; Matthias Rottmann; David Plouffe; Badry Bursulaya; Stephan Meister; Lucia E. Rameh; Joerg Trappe; Dorothea Haasen; Martijn Timmerman; Robert W. Sauerwein; Rossarin Suwanarusk

Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.Summary Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here, we identify a lipid kinase, phosphatidylinositol 4-kinase (PI4K), as the target of imidazopyrazines, a novel antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens, P. falciparum and P. vivax, and inhibit liver stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI4K, altering the intracellular distribution of phosphatidylinositol 4-phosphate. Collectively, our data define PI4K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.


Nature Chemical Biology | 2008

Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility.

Nobutaka Kato; Tomoyo Sakata; Ghislain Breton; Karine G. Le Roch; Advait Nagle; Carsten B Andersen; Badry Bursulaya; Kerstin Henson; Jeffrey R. Johnson; Kota Arun Kumar; Felix Marr; Daniel E. Mason; Case W. McNamara; David Plouffe; Muriel Spooner; Tove Tuntland; Yingyao Zhou; Eric C. Peters; Arnab K. Chatterjee; Peter G. Schultz; Gary E. Ward; Nathanael S. Gray; Jeffrey F. Harper; Elizabeth A. Winzeler

Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.


Chemical Reviews | 2014

Recent Developments in Drug Discovery for Leishmaniasis and Human African Trypanosomiasis

Advait Nagle; Shilpi Khare; Arun Babu Kumar; Frantisek Supek; Andriy Buchynskyy; Casey J. N. Mathison; Naveen Kumar Chennamaneni; Nagendar Pendem; Frederick S. Buckner; Michael H. Gelb

Leishmaniasis is a parasitic disease that presents four main clinical syndromes: cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), visceral leishmaniasis/kala azar (VL), and post kala azar dermal leishmaniasis (PKDL). Causative Leishmania are protozoan parasites that are transmitted among mammalian hosts by phlebotomine sandflies. In mammalian hosts, parasite cells proliferate inside the host phagocytic cells as round amastigotes. Infection of sandflies with Leishmania occurs during insect feeding on infected mammalian hosts. After introduction into the insect gut together with the blood meal, Leishmania amastigotes transform into elongated flagellated promastigotes that propagate in the insect gut. A new round of infection is initiated after the infected sandfly takes a blood meal from a naive mammalian host and introduces Leishmania parasites into the bite wound in the host dermis (Scheme 1). More than 20 different Leishmania species have been found to cause human leishmaniasis (Table 1). Leishmaniasis is endemic in 98 countries and is closely associated with poverty. More than a million new cases are reported per year and 350 million people are at risk of contracting the infection. For the most severe form of leishmaniasis, VL, ∼300 000 new cases are estimated to occur annually resulting in ∼40 000 deaths. Approximately 90% of all VL cases occur in 3 endemic foci: 1. India, Bangladesh, and Nepal; 2. East Africa; and 3. Brazil. In spite of the high prevalence, currently available treatments for leishmaniasis are inadequate. Pentavalent antimonials, the standard treatment for leishmaniasis for many decades, are not efficacious in Bihar (∼60% of VL cases worldwide) any longer due to widespread resistance to the drug in this region. Several new VL treatments have emerged during the past 10–15 years, but each has serious shortcomings (summarized in Table 2). These include paromomycin (injectable, long treatment, region-dependent efficacy), miltefosine (cost, teratogenicity, long treatment), and liposomal amphotericin B (cost, hospitalization, region-dependent efficacy). An additional challenge is represented by patients with HIV/VL coinfections who are more difficult to cure (lower initial and final cure rates), have greater susceptibility to drug toxicity, and have higher rates of death and relapse. Due to the limitations of the existing treatments, better drugs are urgently needed. Ideally, new VL drugs would be efficacious across all endemic regions, would affect cure in ≤10 days, and would cost <


Nature | 2016

Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

Shilpi Khare; Advait Nagle; Agnes Biggart; Yin H. Lai; Fang Liang; Lauren C. Davis; S. Whitney Barnes; Casey J. N. Mathison; Elmarie Myburgh; Mu-Yun Gao; J. Robert Gillespie; Xianzhong Liu; Jocelyn L. Tan; Monique Stinson; Ianne Rivera; Jaime Ballard; Vince Yeh; Todd Groessl; Hazel X. Y. Koh; John D. Venable; Badry Bursulaya; Michael B. Shapiro; Pranab Mishra; Glen Spraggon; Ansgar Brock; Jeremy C. Mottram; Frederick S. Buckner; Srinivasa P. S. Rao; Ben G. Wen; John R. Walker

10 per course (for a complete target product profile for new VL drugs, which was formulated by DNDi, see Table 4).1 Here we describe the disease history and parasite biology followed by a summary of the currently available treatments and, finally, review reports of novel small molecules with antileishmanial activity.


Journal of Medicinal Chemistry | 2011

Imidazolopiperazines: hit to lead optimization of new antimalarial agents.

Tao Wu; Advait Nagle; Kelli Kuhen; Kerstin Gagaring; Rachel Borboa; Caroline Francek; Zhong Chen; David Plouffe; Anne Goh; Suresh B. Lakshminarayana; Jeanette Wu; Hui Qing Ang; Peiting Zeng; Min Low Kang; William Tan; Maria Tan; Nicole Ye; Xuena Lin; Christopher Caldwell; Jared Ek; Suzanne Skolnik; Fenghua Liu; Jianling Wang; Jonathan Chang; Chun Li; Thomas Hollenbeck; Tove Tuntland; John Isbell; Christoph Fischli; Reto Brun

Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.


Antimicrobial Agents and Chemotherapy | 2014

KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission

Kelli Kuhen; Arnab K. Chatterjee; Matthias Rottmann; Kerstin Gagaring; Rachel Borboa; Jennifer Buenviaje; Zhong Chen; Carolyn Francek; Tao Wu; Advait Nagle; S. Whitney Barnes; David Plouffe; Marcus C. S. Lee; David A. Fidock; Wouter Graumans; Marga van de Vegte-Bolmer; Geert Jan van Gemert; Grennady Wirjanata; Boni F. Sebayang; Jutta Marfurt; Bruce Russell; Rossarin Suwanarusk; Ric N. Price; François Nosten; Anchalee Tungtaeng; Montip Gettayacamin; Jetsumon Sattabongkot; Jennifer Taylor; John R. Walker; David C. Tully

Starting from a hit series from a GNF compound library collection and based on a cell-based proliferation assay of Plasmodium falciparum, a novel imidazolopiperazine scaffold was optimized. SAR for this series of compounds is discussed, focusing on optimization of cellular potency against wild-type and drug resistant parasites and improvement of physiochemical and pharmacokinetic properties. The lead compounds in this series showed good potencies in vitro and decent oral exposure levels in vivo. In a Plasmodium berghei mouse infection model, one lead compound lowered the parasitemia level by 99.4% after administration of 100 mg/kg single oral dose and prolonged mice survival by an average of 17.0 days. The lead compounds were also well-tolerated in the preliminary in vitro toxicity studies and represents an interesting lead for drug development.


Journal of Medicinal Chemistry | 2012

Imidazolopiperazines:Lead Optimization of the Second-Generation Antimalarial Agents

Advait Nagle; Tao Wu; Kelli Kuhen; Kerstin Gagaring; Rachel Borboa; Caroline Francek; Zhong Chen; David Plouffe; Xuena Lin; Christopher Caldwell; Jared Ek; Suzanne Skolnik; Fenghua Liu; Jianling Wang; Jonathan Chang; Chun Li; Bo Liu; Thomas Hollenbeck; Tove Tuntland; John Isbell; Tiffany Chuan; Philip B. Alper; Christoph Fischli; Reto Brun; Suresh B. Lakshminarayana; Matthias Rottmann; Thierry T. Diagana; Elizabeth A. Winzeler; Richard Glynne; David C. Tully

ABSTRACT Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have activity in the prevention and treatment of blood stage infection in a mouse model of malaria. Consistent with the previously reported activity profile of this series, the clinical candidate KAF156 shows blood schizonticidal activity with 50% inhibitory concentrations of 6 to 17.4 nM against P. falciparum drug-sensitive and drug-resistant strains, as well as potent therapeutic activity in a mouse models of malaria with 50, 90, and 99% effective doses of 0.6, 0.9, and 1.4 mg/kg, respectively. When administered prophylactically in a sporozoite challenge mouse model, KAF156 is completely protective as a single oral dose of 10 mg/kg. Finally, KAF156 displays potent Plasmodium transmission blocking activities both in vitro and in vivo. Collectively, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria.


Bioorganic & Medicinal Chemistry Letters | 2008

Clinical stage EGFR inhibitors irreversibly alkylate Bmx Kinase

Wooyoung Hur; Anastasia Velentza; Sungjoon Kim; Laura Flatauer; Xinnong Jiang; David Valente; Daniel E. Mason; Melissa Suzuki; Brad Larson; Jianming Zhang; Anna Zagórska; Michael DiDonato; Advait Nagle; Markus Warmuth; Steven P. Balk; Eric C. Peters; Nathanael S. Gray

On the basis of the initial success of optimization of a novel series of imidazolopiperazines, a second generation of compounds involving changes in the core piperazine ring was synthesized to improve antimalarial properties. These changes were carried out to further improve the potency and metabolic stability of the compounds by leveraging the outcome of a set of in vitro metabolic identification studies. The optimized 8,8-dimethyl imidazolopiperazine analogues exhibited improved potency, in vitro metabolic stability profile and, as a result, enhanced oral exposure in vivo in mice. The optimized compounds were found to be more efficacious than the current antimalarials in a malaria mouse model. They exhibit moderate oral exposure in rat pharmacokinetic studies to achieve sufficient multiples of the oral exposure at the efficacious dose in toxicology studies.

Collaboration


Dive into the Advait Nagle's collaboration.

Top Co-Authors

Avatar

Arnab K. Chatterjee

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelli Kuhen

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

David C. Tully

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Plouffe

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Borboa

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Kerstin Gagaring

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Case W. McNamara

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge