Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ae Markaki is active.

Publication


Featured researches published by Ae Markaki.


Acta Materialia | 2001

The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams

Ae Markaki; T.W. Clyne

This study primarily concerns the role of cell wall microstructure in influencing the mechanical behaviour of metallic foams. Three closed-cell foams have been examined, having rather similar relative densities and cell structures but significant differences in cell wall microstructure. It is concluded that these differences can substantially affect the micro-mechanisms of deformation and failure under different types of loading and can also have an influence on the macroscopic mechanical response. Cell wall ductility and toughness are impaired by high volume fractions of coarse eutectic, fine oxide films and large brittle particles, all of which were present in one or more of the foams studied. This impairment can lead to extensive brittle fracture of cell walls, with little energy absorption, even under nominally compressive loading conditions. The influence of cell wall ductility tends to become more significant when the loading state is such that local tensile stresses are generated.


Philosophical Transactions of the Royal Society A | 2006

Porous materials for thermal management under extreme conditions

T.W. Clyne; Igor O. Golosnoy; Jin-Chong Tan; Ae Markaki

A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc., i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid–solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials.


Acta Materialia | 2003

Mechanics of thin ultra-light stainless steel sandwich sheet material: Part I. Stiffness

Ae Markaki; T.W. Clyne

Abstract Three variants of a novel steel sandwich sheet material have been studied. The geometrical arrangements of the steel fibres in the core have been characterised. Certain mechanical properties of the fibres have also been investigated. The beam stiffnesses of the sheets, and also their through-thickness Young’s moduli, have been measured. These results have been compared with model predictions. It is shown that the beam stiffnesses are in all cases significantly lower than expected from simple bending theory. This is attributed to the low through-thickness stiffness of the core and also to a low resistance to shear. Modelling of these properties has facilitated the identification of changes to the core structure, which should lead to improved beam stiffness, while retaining a low density. Increased fibre diameter, and possibly an alteration to the fibre sectional shape, are the most promising changes. Of course, implications for other properties, and for ease of manufacture, will also need to be borne in mind.


Biomaterials | 2015

The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel

Sara Bagherifard; Daniel J. Hickey; Alba C. de Luca; Vera N. Malheiro; Ae Markaki; M. Guagliano; Thomas J. Webster

Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram-positive bacteria (S. aureus and S. epidermidis) decreased with increasing nanoscale surface roughness, and was not affected by grain refinement. Ultimately, this study demonstrated the advantages of the proposed shot peening treatment to produce multifunctional 316L stainless steel materials for improved implant functions without necessitating the use of drugs.


Acta Materialia | 2003

Mechanics of thin ultra-light stainless steel sandwich sheet material Part II. Resistance to delamination

Ae Markaki; T.W. Clyne

Abstract This study concerns three variants of a novel type of thin sandwich sheet. Details of the core structures, and also the results of an investigation into elastic properties, were presented in the first part of this pair of papers. A study was also made of the tensile properties of single fibres of the type present in the core of these sheets. In this second paper, an investigation is presented of the resistance offered by these materials to delamination of the two faceplates. In one variant of the material, in which the fibres lie approximately normal to the plane of the sheet, delamination occurs predominantly by frictional pull-out of fibres from their sockets in the adhesive. The mode I fracture energy has been measured at about 340 J m −2 . This value is consistent with predictions from a model based on shear-lag theory, with a fibre–adhesive interfacial shear strength of about 5 MPa. It is noted that there should be scope for improving the fracture energy somewhat by raising the strength of the fibre–adhesive bond. For the other two variants studied, in which the fibres are softer (as a result of heat treatment during sintering) and are inclined close to the plane of the sheet, the measured fracture energy is appreciably lower at about 30 J m −2 . In this case, delamination occurs by fracture of the fibres near the mid-plane. Application of a simple model for prediction of the fracture energy in this case leads to the conclusion that some of the fracture was probably of sintered necks between fibres, rather than the fibres themselves, and that this process required considerably less energy.


Biomaterials | 2011

Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a Magneto-Mechanically Actuated Fibrous Scaffold

Vera N. Malheiro; Rose L. Spear; Roger A. Brooks; Ae Markaki

The rationale behind this work is to design an implant device, based on a ferromagnetic material, with the potential to deform in vivo promoting osseointegration through the growth of a healthy periprosthetic bone structure. One of the primary requirements for such a device is that the material should be non-inflammatory and non-cytotoxic. In the study described here, we assessed the short-term cellular response to 444 ferritic stainless steel; a steel, with a very low interstitial content and a small amount of strong carbide-forming elements to enhance intergranular corrosion resistance. Two different human cell types were used: (i) foetal osteoblasts and (ii) monocytes. Austenitic stainless steel 316L, currently utilised in many commercially available implant designs, and tissue culture plastic were used as the control surfaces. Cell viability, proliferation and alkaline phosphatase activity were measured. In addition, cells were stained with alizarin red and fluorescently-labelled phalloidin and examined using light, fluorescence and scanning electron microscopy. Results showed that the osteoblast cells exhibited a very similar degree of attachment, growth and osteogenic differentiation on all surfaces. Measurement of lactate dehydrogenase activity and tumour necrosis factor alpha protein released from human monocytes indicated that 444 stainless steel did not cause cytotoxic effects or any significant inflammatory response. Collectively, the results suggest that 444 ferritic stainless steel has the potential to be used in advanced bone implant designs.


Nature Medicine | 2017

Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids

Fotios Sampaziotis; Alexander Justin; O Tysoe; Stephen J. Sawiak; Edmund Godfrey; Sara Upponi; Richard L. Gieseck; Miguel Cardoso de Brito; Natalie Lie Berntsen; María J Gómez-Vázquez; Daniel Ortmann; Loukia Yiangou; Alexander Ross; Johannes Bargehr; Alessandro Bertero; Mariëlle C. F. Zonneveld; Marianne Terndrup Pedersen; Matthias Pawlowski; Laura Valestrand; Pedro Madrigal; Nikitas Georgakopoulos; Negar Pirmadjid; Gregor Skeldon; John Casey; Wenmiao Shu; Paulina M Materek; Kirsten E. Snijders; Stephanie E. Brown; Casey Rimland; Ingrid Simonic

The treatment of common bile duct (CBD) disorders, such as biliary atresia or ischemic strictures, is restricted by the lack of biliary tissue from healthy donors suitable for surgical reconstruction. Here we report a new method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree in the form of extrahepatic cholangiocyte organoids (ECOs) for regenerative medicine applications. The resulting ECOs closely resemble primary cholangiocytes in terms of their transcriptomic profile and functional properties. We explore the regenerative potential of these organoids in vivo and demonstrate that ECOs self-organize into bile duct–like tubes expressing biliary markers following transplantation under the kidney capsule of immunocompromised mice. In addition, when seeded on biodegradable scaffolds, ECOs form tissue-like structures retaining biliary characteristics. The resulting bioengineered tissue can reconstruct the gallbladder wall and repair the biliary epithelium following transplantation into a mouse model of injury. Furthermore, bioengineered artificial ducts can replace the native CBD, with no evidence of cholestasis or occlusion of the lumen. In conclusion, ECOs can successfully reconstruct the biliary tree, providing proof of principle for organ regeneration using human primary cholangiocytes expanded in vitro.


Journal of Biomedical Materials Research Part A | 2015

Effect of microgrooved surface topography on osteoblast maturation and protein adsorption

Alba C. de Luca; Mareike Zink; Astrid Weidt; S. G. Mayr; Ae Markaki

Microgrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum-supplemented medium. Groove spacing was comparable with the spread osteoblast size. Focal adhesions were observed to confine to the intervening ridge/groove boundaries. Osteoblasts bridged over the grooves and were unable to conform to the concave shape of the underlying grooves. Microgrooved surfaces induced higher osteoblast proliferation and metabolic activity after 14 days in osteogenic medium compared with as-received surfaces, resulting in higher mineralization and alignment of cell-secreted collagen after 28 days. To establish whether preferential cell attachment at the ridge/groove boundaries was influenced by the adhesion proteins contained in the serum-supplemented media, fluorescently labeled fibronectin was adsorbed onto the microgrooved substrates at low concentrations, mimicking the concentrations found in blood serum. Fibronectin was found to selectively adsorb onto the ridge/groove boundaries, the osteoblast focal adhesion sites, suggesting that protein adsorption may have influenced the cell attachment pattern.


Materials Science and Technology | 2000

Characterisation of impact response of metallic foam/ceramic laminates

Ae Markaki; T.W. Clyne

Abstract The impact response of laminated composites consisting of alternate layers of Al alloy foam and Al2O3 was studied experimentally in low and intermediate velocity regimes. Low velocity impacts (1.2–2.8 m s-1) were conducted using an instrumented falling weight apparatus and were compared with static indentation tests (0.2×10-4 m s-1). Intermediate velocity impacts were carried out by means of both Hopkinson bar (60 m s -1)and gas gun (200 m s-1) tests. Postimpact damage was assessed using X-ray radiography and microscopy. It was found that there is good correlation between low velocity impact and quasistatic responses. In both cases, penetration of the layered targets resulted in the formation of a distinctive plug. Increasing impact velocity (intermediate velocity range) switched the penetration mode from plugging to fragmentation, giving rise to an increase in the absorbed energy. In this range, impacts led to localisation of damage in the region under the projectile. Furthermore, a comparison has been made between the penetration response of foam laminates and dense metal laminates of equivalent areal density. Preliminary results suggest that the dense metal laminates are superseded by the foam laminates on an energy absorption basis.


Acta Biomaterialia | 2016

Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states

Mc Varley; Suresh Neelakantan; T.W. Clyne; James Dean; Roger A. Brooks; Ae Markaki

UNLABELLED Scaffolds for tissue engineering applications should be highly permeable to support mass transfer requirements while providing a 3-D template for the encapsulated biological cells. High porosity and cell interconnectivity result in highly compliant scaffolds. Overstraining occurs easily with such compliant materials and can produce misleading results. In this paper, the cell structure of freeze-dried collagen scaffolds, in both dry and hydrated states, was characterised using X-ray tomography and 2-photon confocal microscopy respectively. Measurements have been made of the scaffolds Youngs modulus using conventional mechanical testing and a customised see-saw testing configuration. Specific permeability was measured under constant pressure gradient and compared with predictions. The collagen scaffolds investigated here have a coarse cell size (∼100-150 μm) and extensive connectivity between adjacent cells (∼10-30 μm) in both dry and hydrated states. The Youngs modulus is very low, of the order of 10 kPa when dry and 1 kPa when hydrated. There is only a single previous study concerning the specific permeability of (hydrated) collagen scaffolds, despite its importance in nutrient diffusion, waste removal and cell migration. The experimentally measured value reported here (5 × 10(-)(10)m(2)) is in good agreement with predictions based on Computational Fluid Dynamics simulation and broadly consistent with the Carman-Kozeny empirical estimate. It is however about three orders of magnitude higher than the single previously-reported value and this discrepancy is attributed at least partly to the high pressure gradient imposed in the previous study. STATEMENT OF SIGNIFICANCE The high porosity and interconnectivity of tissue engineering scaffolds result in highly compliant structures (ie large deflections under low applied loads). Characterisation is essential if these scaffolds are to be systematically optimised. Scaffold overstraining during characterisation can lead to misleading results. In this study, the stiffness (in dry and hydrated states) and specific permeability of freeze-dried collagen scaffolds have been measured using techniques customised for low stiffness structures. The scaffold cell structure is investigated using X-ray computed tomography, which has been applied previously to visualise such materials, without extracting any structural parameters or simulating fluid flow. These are carried out in this work. 2-photon confocal microscopy is used for the first time to study the structure in hydrated state.

Collaboration


Dive into the Ae Markaki's collaboration.

Top Co-Authors

Avatar

T.W. Clyne

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fotios Sampaziotis

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

James Dean

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Jm Sobral

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

R Rezk

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge