Aeffendi Hashim
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aeffendi Hashim.
Journal of Lightwave Technology | 2014
Nikolaos Bamiedakis; Aeffendi Hashim; Richard V. Penty; I.H. White
Optical technologies have received large interest in recent years for use in board-level interconnects. Polymer multimode waveguides in particular, constitute a promising technology for high-capacity optical backplanes as they can be cost-effectively integrated onto conventional printed circuit boards (PCBs). This paper presents the first optical backplane demonstrator based on the use of PCB-integrated polymer multimode waveguides and a regenerative shared bus architecture. The backplane demonstrator is formed with commercially-available low-cost electronic and photonic components onto conventional FR4 substrates and comprises two opto-electronic (OE) bus modules interconnected via a prototype regenerator unit. The system enables interconnection between the connected cards over four optical channels, each operating at 10 Gb/s. Bus extension is achieved by cascading OE bus modules via 3R regenerator units, overcoming therefore the inherent limitation of optical bus topologies in the maximum number of cards that can be connected to the bus. Details of the design, fabrication, and assembly of the different parts of this optical bus backplane are presented and related optical and data transmission characterisation studies are reported. The optical layer of the OE bus modules comprises a four-channel three-card waveguide layout that is compatible with VCSEL/PD arrays and ribbon fibres. All on-board optical paths exhibit insertion losses below 13 dB and intra-channel crosstalk lower than -29 dB. The robustness of the signal distribution from the bus inputs to all respective bus output ports in the presence of input misalignment is demonstrated, while 1 dB input alignment tolerances of approximately ±10 μm are obtained. The electrical layer of the OE bus modules comprises the essential driving circuitry for 1×4 VCSEL and PD arrays and the corresponding control and power regulation circuits. The interface between the optical and electrical layers of the bus modules is achieved with simple OE connectors that enable end-fired optical coupling into and out of the on-board polymer waveguides. The backplane demonstrator achieves error-free (BER <; 10-12) 10 Gb/s data transmission over each optical channel, enabling therefore, an aggregate interconnection capacity of 40 Gb/s between any connected cards.
Journal of Lightwave Technology | 2013
Aeffendi Hashim; Nikolaos Bamiedakis; Richard V. Penty; I.H. White
Multimode polymer waveguides are an attractive transmission medium for board-level optical links as they provide high bandwidth, relaxed alignment tolerances, and can be directly integrated onto conventional printed circuit boards. However, the performance of multimode waveguide components depends on the launch conditions at the component input, complicating their use in topologies that require the concatenation of multiple multimode components. This paper presents key polymer components for a multichannel optical bus and reports their performance under different launch conditions, enabling useful rules that can be used to design complex interconnection topologies to be derived. The components studied are multimode signal splitters and combiners, 90°-crossings, S-bends, and 90°-bends. By varying the width of the splitter arms, a splitting ratio between 1% and 95% is achieved from the 1 × 2 splitters, while low-loss signal combining is demonstrated with the waveguide combiners. It is shown that a 3 dB improvement in the combiner excess loss can be achieved by increasing the bus width by 50 μm. The worst-case insertion loss of 50 × 100 μm waveguide crossings is measured to be 0.1 dB/crossing. An empirical method is proposed and used to estimate the insertion losses of on-board optical paths of a polymeric four-channel optical bus module. Good agreement is achieved between the predicted and measured values. Although the components and empirical method have been tailored for use in a multichannel optical bus architecture, they can be used for any on-board optical interconnection topology.
IEEE Transactions on Components, Packaging and Manufacturing Technology | 2013
Nikolaos Bamiedakis; Aeffendi Hashim; Joseph Beals; Richard V. Penty; IanH. White
A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links.
Proceedings of SPIE, the International Society for Optical Engineering | 2010
Nikolaos Bamiedakis; Joseph Beals; Aeffendi Hashim; Richard V. Penty; I.H. White
An optical transceiver formed onto a conventional low-cost printed circuit board with integrated optical waveguides is presented. The transceiver incorporates an optical multimode polymer Y-splitter formed directly on a low-cost singlelayered FR4 substrate enabling duplex transmission along a single optical fibre. The transmitter and receiver assemblies are mounted onto the board using methods common to conventional PCB manufacturing. Simple through-board connectors, compatible with pick-and-place assembly technology, are used to interface the electrical and optical layers of the board. This approach allows end-fired optical coupling between the active devices and optical waveguides on the board. The demonstrated transceiver, intended as a board-level optical network unit, achieves error-free data transmission for both Tx and Rx modules at 10 Gb/s.
Optics Express | 2012
Nikolaos Bamiedakis; Aeffendi Hashim; Richard V. Penty; I.H. White
A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-of-principle demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ -15 dB) and low crosstalk values (< -30 dB) are achieved for the fabricated samples while better than ± 6 µm -1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10(-12) is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator.
conference on lasers and electro optics | 2012
Aeffendi Hashim; Nikolaos Bamiedakis; Richard V. Penty; I.H. White
The design and characterization of polymer-based multimode 90°-crossings, combiners and splitters exhibiting excess losses below 0.1 dB/crossing, 2 dB and 3 dB respectively are reported. The devices enable the realization of an on-board optical bus.
international conference on transparent optical networks | 2012
Nikos Bamiedakis; Aeffendi Hashim; Richard V. Penty; I.H. White
Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplane as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, two different types of polymer waveguide-based optical backplanes are presented. The first one implements a passive shuffle architecture enabling non-blocking on-board optical interconnection between different cards/modules, while the second one deploys a regenerative bus architecture allowing the interconnection of an arbitrary number of electrical cards over a common optical bus. The polymer materials and the multimode waveguide components used to form the optical backplanes are presented, while details of the interconnection architectures and design of the backplanes are described. Proof-of-principle demonstrators fabricated onto low-cost FR4 substrates, including a 10-card 1 Tb/s-capacity passive shuffle router and 4-channel 3-card polymeric bus modules, are reported and their optical performance characteristics are presented. Low-loss, low-crosstalk on-board interconnection is achieved and error-free (BER<;10-12) 10 Gb/s communication between different card/module interfaces is demonstrated in both polymeric backplane systems.
conference on lasers and electro optics | 2012
Nikolaos Bamiedakis; Aeffendi Hashim; Richard V. Penty; I.H. White
A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated.
european conference on optical communication | 2010
Aeffendi Hashim; Nikos Bamiedakis; Richard V. Penty; I.H. White
A fully-integrated chip-to-chip optical interconnect fabricated on a low-cost single-layered FR4 substrate primarily using conventional electronic manufacturing practices is demonstrated. The interconnect achieves error-free 10 Gb/s data transmission and a better than ±13 µm tolerance to component misalignments.
optical fiber communication conference | 2012
Nikos Bamiedakis; Aeffendi Hashim; Richard V. Penty; I.H. White
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported.