Afef Najjari
Tunis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Afef Najjari.
New Biotechnology | 2013
Mouna Mahjoubi; Atef Jaouani; Amel Guesmi; Sonia Ben Amor; Ahlem Jouini; Hanen Cherif; Afef Najjari; Abdellatif Boudabous; Nedra Koubaa; Ameur Cherif
Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by natural existing populations of microorganisms. In this work, a collection of 125 strains, adapted to grow on minimal medium supplemented with crude oil, was obtained from contaminated sediments and seawater from a refinery harbor of the Bizerte coast in the North of Tunisia. The diversity of the bacterial collection was analyzed by amplification of the internal transcribed spacers between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. A total of 36 distinct ITS haplotypes were detected on agarose matrix. Partial 16S rRNA gene sequencing performed on 50 isolates showed high level of identity with known sequences. Strains were affiliated to Ochrabactrum, Sphingobium, Acinetobacter, Gordonia, Microbacterium, Brevundimonas, Novosphingobium, Stenotrophomonas, Luteibacter, Rhodococcus, Agrobacterium, Achromobacter, Bacilllus, Kocuria and Pseudomonas genera. Acinetobacter and Stenotrophomons were found to be the most abundant species characterized by a marked microdiversity as shown through ITS typing. Culture-independent approach (DGGE) showed high diversity in the microbial community in all the studied samples with a clear correlation with the hydrocarbon pollution rate. Sequencing of the DGGE bands revealed a high proportion of Proteobacteria represented by the Alpha and Gamma subclasses. The predominant bacterial detected by both dependent and independent approaches were the Proteobacteria. The biotechnological potential of the isolates revealed a significant production of biosurfactants with important emulsification activities useful in bioremediation. The highest emulsification activity was detected in Pseudomonas geniculata with 52.77% of emulsification. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications.
PLOS ONE | 2013
Stéphane Chaillou; Isabelle Lucquin; Afef Najjari; Monique Zagorec; Marie-Christine Champomier-Vergès
Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products.
BioMed Research International | 2013
Imene Fhoula; Afef Najjari; Yousra Turki; Sana Jaballah; Abdelatif Boudabous; Hadda Ouzari
A total of 119 lactic acid bacteria (LAB) were isolated, by culture-dependant method, from rhizosphere samples of olive trees and desert truffles and evaluated for different biotechnological properties. Using the variability of the intergenic spacer 16S-23S and 16S rRNA gene sequences, the isolates were identified as the genera Lactococcus, Pediococcus, Lactobacillus, Weissella, and Enterococcus. All the strains showed proteolytic activity with variable rates 42% were EPS producers, while only 10% showed the ability to grow in 9% NaCl. In addition, a low rate of antibiotic resistance was detected among rhizospheric enterococci. Furthermore, a strong antibacterial activity against plant and/or pathogenic bacteria of Stenotrophomonas maltophilia, Pantoea agglomerans, Pseudomonas savastanoi, the food-borne Staphylococcus aureus, and Listeria monocytogenes was recorded. Antifungal activity evaluation showed that Botrytis cinerea was the most inhibited fungus followed by Penicillium expansum, Verticillium dahliae, and Aspergillus niger. Most of the active strains belonged to the genera Enterococcus and Weissella. This study led to suggest that environmental-derived LAB strains could be selected for technological application to control pathogenic bacteria and to protect food safety from postharvest deleterious microbiota.
Microbial Pathogenesis | 2015
Leyla Tahrani; Leila Soufi; Ines Mehri; Afef Najjari; Abdenaceur Hassan; Joris Van Loco; Tim Reyns; Ameur Cherif; Hedi Ben Mansour
Contamination of surface waters in underdeveloped countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks which may represent a significant dissemination mechanism of antibiotic resistance genes among pathogenic bacterial populations. The present study aims to determine the multi-drug resistance patterns among isolated and identified bacterial strains in a pharmaceutical wastewater effluent in north Tunisia. Fourteen isolates were obtained and seven of them were identified. These isolates belong to different genera namely, Pseudomonas, Acinetobacter, Exiguobacterium, Delftia and Morganella. Susceptibility patterns of these isolates were studied toward commonly used antibiotics in Tunisia. All the identified isolates were found to have 100% susceptibility against colistin sulfate and 100% resistance against amoxicillin. Among the 11 antibiotics tested, six patterns of multi-drug resistance were obtained. The potential of the examined wastewater effluent in spreading multi-drug resistance and the associated public health implications are discussed.
Applied and Environmental Microbiology | 2015
Afef Najjari; Mostafa S. Elshahed; Ameur Cherif; Noha H. Youssef
ABSTRACT We examined the diversity and community structure of members of the halophilic Archaea (class Halobacteria) in samples from central and southern Tunisian endorheic salt lakes and sebkhet (also known as sebkha) systems using targeted 16S rRNA gene diversity survey and quantitative PCR (qPCR) approaches. Twenty-three different samples from four distinct locations exhibiting a wide range of salinities (2% to 37%) and physical characteristics (water, salt crust, sediment, and biofilm) were examined. A total of 4,759 operational taxonomic units at the 0.03 (species-level) cutoff (OTU0.03s) belonging to 45 currently recognized genera were identified, with 8 to 43 genera (average, 30) identified per sample. In spite of the large number of genera detected per sample, only a limited number (i.e., 2 to 16) usually constituted the majority (≥80%) of encountered sequences. Halobacteria diversity showed a strong negative correlation to salinity (Pearson correlation coefficient = −0.92), and community structure analysis identified salinity, rather than the location or physical characteristics of the sample, as the most important factor shaping the Halobacteria community structure. The relative abundance of genera capable of biosynthesis of the compatible solute(s) trehalose or 2-sulfotrehalose decreased with increasing salinities (Pearson correlation coefficient = −0.80). Indeed, qPCR analysis demonstrated that the Halobacteria otsB (trehalose-6-phosphatase)/16S rRNA gene ratio decreases with increasing salinities (Pearson correlation coefficient = −0.87). The results highlight patterns and determinants of Halobacteria diversity at a previously unexplored ecosystem and indicate that genera lacking trehalose biosynthetic capabilities are more adapted to growth in and colonization of hypersaline (>25% salt) ecosystems than trehalose producers.
BioMed Research International | 2013
Darine El Hidri; Amel Guesmi; Afef Najjari; Hanen Cherif; Besma Ettoumi; Chadlia Hamdi; Abdellatif Boudabous; Ameur Cherif
Haloalkaliphiles are polyextremophiles adapted to grow at high salt concentrations and alkaline pH values. In this work, we isolated 122 haloalkaliphilic bacteria upon enrichments of 23 samples from 5 distinct saline systems of southern Tunisia, growing optimally in media with 10% salt and at pH 10. The collection was classified into 44 groups based on the amplification of the 16S–23S rRNA internal transcribed spacers (ITS-PCR). Phylogenetic analysis and sequencing of the 16S rRNA genes allowed the identification of 13 genera and 20 distinct species. Three gram-positive isolates showing between 95 and 96% of 16S rRNA sequence homology with Bacillus saliphilus could represent new species or genus. Beside the difference in bacterial diversity between the studied sites, several species ecological niches correlations were demonstrated such as Oceanobacillus in salt crust, Nesterenkonia in sand, and Salinicoccus in the rhizosphere of the desert plant Salicornia. The collection was further evaluated for the production of extracellular enzymes. Activity tests showed that gram-positive bacteria were mostly active, particularly for protease, lipase, DNase, and amylase production. Our overall results demonstrate the huge phenotypic and phylogenetic diversity of haloalkaliphiles in saline systems of southern Tunisia which represent a valuable source of new lineages and metabolites.
Letters in Applied Microbiology | 2006
Hadda-Imene Ouzari; Abdennaceur Hassen; Afef Najjari; Besma Ettoumi; Daniele Daffonchio; Monique Zagorec; Abdellatif Boudabous; Diego Mora
Aims: To evaluate the esterase phenotype in Lactococcus lactis strains isolated from traditional Tunisian dairy products.
Annals of Microbiology | 2008
Hadda Ouzari; Afef Najjari; Houda Amairi; Maher Gtari; Abdenaceur Hassen; Abdellatif Boudabous
Detection of lactic acid bacteria (LAB) bacteriocins producers is of great significance for food industry to establish starter bacterial association and to improve food safety. Eighty oneLactococcus lactis strains, isolated from traditional Tunisian dairy products, were screened for their antibacterial activity. Bacteriocin production in the supernatant was demonstrated for twelve strains by the well diffusion assay, protease susceptibility and by direct detection of the activity on SDS-PAGE. By using PCR with primers targeting structural genes of nisin and lactoccocin 481, we were able to predict their presence in 10 and one strain respectively. No amplifications were recorded with primers targeting lactococcin A, lactococcin 972 and bacteriocin J46 ofL. lactis. The remaining unidentified bacteriocin produced by strain BMG 6.25 and designed as lactococcin IAF 25, was further characterised. IAF 25 was shown to be a heat-stable proteinaceous inhibitory factor sensitive to papain and trypsin but resistant to proteinase K treatment. IAF 25 has an apparent molecular weight of 6 kDa and showed a narrow antimicrobial activity spectrum against closely related bacteria and genera. These original characteristics amongL. lactis bacteriocins coupled with cross inhibition tests with bacteriocin producers reference strains, led to the assumption of the novelty of lactococcin IAF 25.
Annals of Microbiology | 2007
Ameur Cherif; Besma Ettoumi; Afef Najjari; Noura Raddadi; Abdellatif Boudabous
The genomic diversity and relationship among 61Bacillus thuringiensis andBacillus cereus reference strains were investigated by electrophoretic analysis of esterase enzymes on native polyacrylamide gel. Polymorphism of the esterolytic bands revealed seven esterases, designed as Est A to Est G in order of decreasing anodal migration. Each esterase showed two to three mobility variants that assigned the analysed strains into 35 electrophoretic types (ETs). This high diversity allowed the identification of several serovar or strain-specific ETs. Cluster analysis of ETs showed three major groups in which the strains belonging to the serovartolworthi were the most distant. The ETs distribution showed thatB. thuringiensis andB. cereus are intermingled in the dendrogram with the resolution of some common serovars ofB. thuringiensis in tight phylogenetic lineages. These results indicate that the esterase enzyme electrophoresis, applied as a sole typing method for the closely related speciesB. thuringiensis andB. cereus is suitable to highlight the intraspecific genetic diversity.
Environmental Technology | 2017
Asma Ben Rajeb; Ines Mehri; Houda Nasr; Afef Najjari; Neila Saidi; Abdennaceur Hassen
ABSTRACT Biological treatment systems use the natural processes of ubiquitous organisms to remove pollutants and improve the water quality before discharge to the environment. In this paper, the nitrification/denitrification reactor allowed a reduction in organic load, but offered a weak efficiency in nitrate reduction. However, the additions of the activated sludge in the reactor improve this efficiency. A decrease of values from 13.3 to 8 mg/l was noted. Nevertheless, sludge inoculation led to a net increase of the number of pathogenic bacteria. For this reason, a UV-C pilot reactor was installed at the exit of the biological nitrification–denitrification device. Thus, a fluence of 50 mJ.cm-2 was sufficient to achieve values of 20 MPN/100 ml for fecal coliform and 6 MPN/100 ml for fecal streptococci, conforms to Tunisian Standards of Rejection. On the other hand, the DGGE approach has allowed a direct assessment of the bacterial community changes upon the treated wastewater.
Collaboration
Dive into the Afef Najjari's collaboration.
Marie-Christine Champomier-Vergès
Institut national de la recherche agronomique
View shared research outputs